
Lecture 10

Solving Square Linear System V:
Existence and Expression of Inverse

Instructor: Ruoyu Sun



Today’s Lecture: Key Questions

Consider a square linear system Ax = b
Theorem If  is invertible, then the linear system has a unique solution   A x = A−1b .

Question 2: How to Express/Compute A−1?

Question 1: When is A invertible?

Will provide an answer today.

(if exists)



Today’s Lecture: Outline

Today … Existence and expression/computa8on of inverse.

1. Existence of Inverse 
2. Expressions and Computa8on of inverse  

Strang’s book: Sec 2.5, 2.6

A@er this lecture, you should be able to 

1. Tell when a matrix is inver8ble based on pivots 
2. Express the inverse of an inver8ble matrix with the aid of elimina8on 
3. Compute the inverse of a small matrix 



Remark & Reminder

A student commented:  

Calculus is more about proofs; 

Linear algebra seems to have few proofs, but more concepts.

Well… 

Today, we will see some intense proofs.  

If LA has 100 levels of difficulty; LA intro course only shows level 1-10. 

Today?  Around level 3. 
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Part 0   Review

5 mins



Effect of Swapping Columns

Claim: Consider a linear system  
Suppose  is obtained by exchanging column  and column  of . 
Suppose  is a solution of . 

 is obtained by exchanging the th and th entry of . 
Then  is a solution of .

Ax = b .
̂A j k A

x* Ax = b
y* j k x*

y* Ay = b

Swapping columns —-> swapping entries of solution

Eg 1: Swapping C1 & C2 of A. 
solution   —> solution   x = (1,2,3) y = (1,3,2)
Eg 2:  Swapping C3 & C5 of A. 
solution   —> solution   x = (3,8,7,1,2) y = (3,8,2,1,7)
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Claim: Only Two Cases of Final Form

Claim  If we solve an  square system by Gauss-Jordan 
Elimination with column exchange, then at the end we obtain 
one of the two forms:  
         Form 1:    

         Form 2:  

Here  is a  matrix, 
          is a  matrix.

n × n

In

[Ik F
0 B]

B (n − k) × (n − k)
F k × (n − k)

Remark: If we can obtain Form 1,  
then column exchange is not needed.

0
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What You (Should) Know by Now

First, how to calculate number of solutions 
for ANY square linear system.

Highlight: no missing case! 
Based on a proof!  

Second, how to solve ANY square linear system 

(Suppose you know how to swap entries 
of the final solutions to account for column exchange)

Remark: For writing solution set, we’ll study more in Lec 11&12.
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Terminology: Gauss Elimination and 
Gauss-Jordan Elimination

So far, we have been using Gauss Elimination to describe the 
whole process of solving linear system, for simplicity.  
More rigorous terms: 

Gauss Elimination:   
  stop at upper triangular matrix.  
  (then use back substitution on equations) 

Gauss-Jordan Elimination:  
   continue to eliminate entries above pivots. 

Gauss-Jordan Elimination with column exchange:  
  Use column exchange to ensure diagonal entries to have 1’s.

Remark: Without column exchange, GJE can solve the linear system too. 
(Discuss in later lectures)
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Part I  Inverse of A: 
Existence

Sec 2.5, Section “Singular versus Invertible”0



Outline of This Part

Outline of this part: 

Test of invertibility: 
       i) by pivots; 

      ii) by equation Ax=0  
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When is A Invertible?

Question 1: When is A invertible?

lgnd : A = [
a"
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When is A Invertible?

Question 1: When is A invertible?

Claim 1: If  pivots exist in Gauss-Jordan elimination, 
then A is invertible. 

n

Claim 2: If A is invertible, then there are  pivots  
in Gauss-Jordan elimination.

n

Answer 1: A is invertible iff 
A has n pivots (assuming A is n by n matrix). See also Sec 2.5 of Strang’s book;  

2nd bullet in the beginning of Sec 2.5. 
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Left Inverse and Right Inverse

Definition (left inverse)

Definition (right inverse)
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Proof of Claim 1:  Step 1
A as Product of Row Elementary Matrices

Gaussian-Jordan elimination (GJE) (both forward and backward)
A → A1 → A2… → U → …B1 → …… → In

U =
1 * … *
0 1 … *
⋮ ⋮ ⋱ *
0 0 … 1

⟶
1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ 0
0 0 … 1

= In .

  
Then the matrix representation of the whole GE process is  
                                EpEp−1…E1A = In .

   A−1 = Ep…E2E1 .

Corresponding elementary matrices: Ep, Ep−1, …, E1 .

?⟹ [just one-side equation;  
need extra argument. 

Next slide]

If there are  pivotsn



AIIf inp thenA 雪

-

eGfUtProofGobtahEp …GA =
I .

(
)

Λ→I AiE A+
- I

elementey mol
( npgetI.)

Mal .fyn ,

mo ,

遮HEt
AuwEPG… EA( )

M

MA = I ⇒ A →= M)上
whene M =

Ep …E ,



⇒ A⼀雪
,npob ⇒ E

9p

-
l = ]Pwofsktech;

?0
⼀

m

Steplt step 2 ,

arjemLMHI'
h,e ay

o prove danI

Incorre MA = I BUT
「

⼀ ①
→ MHA

'
= I - +=at We

do NOT
Ʃ

②
⇒ M -X puve ot lodg

[oern)O⼀ 。

⼀

→
⼀ ⼀
⼀

Coemod spood

&leem . shyp syup .

「

aw' dalar aeaoy sy e
Ion MT proved
willno- uset ,



ReminderForeachstepofthe prof ,
think : what resultldefmitonSupporst

Does it appear m the lectures ?
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proof of Lemmal
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Proof of Claim 1:  Step 2
Left Inverse is Invertible ===> Itself Invertible

Just left inverse.  Need to show   Seems nontrivial?AM = In?

       EpEp−1…E1

M

A = In    A−1 = Ep…E2E1 .?⟹

       MA = In    A−1 = M .
?⟹i.e.

  Proof: Since  exists, we have 
                   
 Then . 

  Together with  by definition of inverse, we have 

M−1

MA = In ⟹ M−1MA = M−1In ⟹ A = M−1 .
AM = M−1M = In

MA = In, A−1 = M .

Lemma: If  and  is invertible, then MA = In, M A−1 = M .

Extapp
M = Ep - -E, 13 nvertible .
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Proof of Claim 2: Skipped

Claim 2: If A is invertible, then there are  pivots  
in Gauss-Jordan elimination.

n

Proof: Skipped.  
(See Strang’s book 5th edition page 88,  
after ”Reasoning in reverse”)

Need to prove by contradiction (反证法).

Inotreit p→ D
controposrme

⇌ θaP ,

Toplonrapositve 逆间

LTn pivoG ther fn NOT Mvertible ,

巡 A→m
, oad

, 「品 ]“
⼀
⼀

Need toshow:If[ Io] isnotnvertible ,

.
thenA 17notmvertible. Cheed exfresteps ;j



When is A Invertible?

Question 1: When is A invertible?
Answer 2: A is invertible iff 

 has a unique solution Ax = 0 x = 0. See also Sec 2.5 of Strang’s book;  
4th bullet in the beginning of Sec 2.5. 
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Recall: Two Cases for Square Systems

1 0 0 0 0
0 1 0 0 0
⋮ ⋮ ⋱ ⋱ 0
0 0 … 1 0
0 0 … 0 1

Case 1: 
n pivots

Case 2:
< n pivots. 
(Allow column 
Exchange)

End of backward step of GJE 

x1 = 0,
x2 = 0, ,
⋮

xn = 0, ,

correspond 
 to 

1 0 … 0 * * *
0 1 … 0 * * *
⋮ ⋮ ⋱ ⋱ * * *
0 0 … 1 * * *
0 0 … 0 0 … 0
0 0 … 0 0 ⋱ 0
0 0 … 0 0 … 0

Remark: GE in the textbook does NOT perform column exchange. 
Anyhow, here our goal is to study # of solutions, so column exchange is OK.

xi1 = . . . . ,
⋮

xik = . . . . ,
0 = 0, ,
⋮

0 = 0 .

correspond 
 to 

Claim: Consider Ax = 0. If less than n pivots, then Ax =0 has ___________ solution.

0
0
0
0
0
0
0
0…
0
0

Coefficient matrix b
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Part II  Computing Inverse

Sec 2.5, Section “Calculating  by …”A−1



Outline of This Part

Outline of this Part: 

—Inverse computation I: Naive way. 

—Inverse computation II: 
      Smarter way by row operations. 
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Expression of Inverse

Question 2a: How to Express ?A−1 (if exists)

Claim: A matrix is invertible iff  
it can be written as the product of elementary matrices. 

Answer:
Suppose  ,  are the elementary matrices 
corresponding to the operations in GJE to get an identity matrix.  
 (if A invertible, then we indeed get identity matrix by GJE) 

Then 

                

E1, …, Ek Ek+1, Ek+2, …, Ep

A−1 = Ep…E2E1 . (10.1)

e
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Recall: Quadratic Equations

During middle school, when you learn quadratic equations, what 
do you learn?

I know you know these. But… 
What are them? 
I mean…. WHAT are them?

x = −b + b2 − 4ac
2a

To solve   
write it as , 
Then get 

x2 + 4x + 1 = 0,
(x + 2)2 = 3
x + 2 = 3 or  − 3 .

[ Readingmaternial ]



Express v.s. Compute

Express: a clear formula containing specific symbols with clear meanings. 
Eg1   
Eg2   
Eg3  The solution of  is  when A is invertible 

Eg4  One root of  is 

A−1 = U−1L−1P .
A−1 = Ep…E2E1

Ax = b x = A−1b
ax2 + bx + c = 0 x = −b + b2 − 4ac

2a

[ Reading matena]



Express v.s. Compute

Express: a clear formula containing specific symbols with clear meanings. 

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers. 
Eg1  can compute the inverse (next pages)   
Eg2 GE can compute the solution  
          (no formula of the root needed) 
Eg3 completing square (配⽅法) can compute roots of  
          (no formula of the root)

A−1 = Ep…E2E1

ax2 + bx + c = 0.

Eg1   
Eg2   
Eg3  The solution of  is  when A is invertible 

Eg4  One root of  is 

A−1 = U−1L−1P .
A−1 = Ep…E2E1

Ax = b x = A−1b
ax2 + bx + c = 0 x = −b + b2 − 4ac

2a

[ Recdingmaternic ]



Express v.s. Compute

Express: a clear formula containing specific symbols with clear meanings. 

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers. 
Eg1  can compute the inverse (next pages)   
Eg2 GE can compute the solution  
          (no formula of the root needed) 
Eg3 completing square (配⽅法) can compute roots of  
          (no formula of the root)

A−1 = Ep…E2E1

ax2 + bx + c = 0.

Eg1   
Eg2   
Eg3  The solution of  is  when A is invertible 

Eg4  One root of  is 

A−1 = U−1L−1P .
A−1 = Ep…E2E1

Ax = b x = A−1b
ax2 + bx + c = 0 x = −b + b2 − 4ac

2a

Relation:
1) Expression can be used to compute, if each symbol can be computed.  
2) But expressions do not have to be computable 
 e.g., if it contains symbols that are not easy to compute (e.g. ) 
3) Algorithms can help derive expressions sometimes, e.g. GE —> 

U−1

A−1

[ Recding matenal ]
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Computing Inverse

Question 2b: How to Compute ?A−1 (if exists)

Algorithm 1 (compute )
Step 1: Forward elimination. 
   Run forward elimination, till get upper triangular matrix U. 
   IF U contains zero diagonal entry: 
          STOP and report: No inverse. 
   ELSE  Go to Step 2. 

Step 2: Backward substitution.
    Run backward substitution, till get identity matrix 

A−1

In .

0

←

∞ θ



Computing Inverse

Question 2b: How to Compute ?A−1 (if exists)

Algorithm 1 (compute )
Step 1: Forward elimination. 
   Run forward elimination, till get upper triangular matrix U. 
   IF U contains zero diagonal entry: 
          STOP and report: No inverse. 
   ELSE  Go to Step 2. 

Step 2: Backward substitution.
    Run backward substitution, till get identity matrix 

A−1

In .
Step 3 Record elementary matrices.  
      Record elementary matrices  in Step 1.  
      Record elementary matrices  in Step 2.  

Step 4: Compute inverse. 
        Compute     

E1, …, Ek
Ek+1, Ek+2, …, Ep

A−1 = Ep…E2E1 . (10.2)

o
o



2 by 2 Example: Understandable Process

Step 3: Express as matrix multiplication (1st and 2nd step):

A = [2 1
6 8] E−3R1+R2

A = [ 1 0
−3 1] [2 1

6 8] = [2 1
0 ] ≜ U .

E− 1
5 R2+R1

U = [1 −1/5
0 1 ] [2 1

0 5] = [2 0
0 5] = D .

E 1
5 R2

E 1
2 R1

D = I2 .

[2 1
6 8] [2 1

0 5] [2 0
0 5]

Step 1 & 2: GE.
−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [1 0

0 1]
←

→



2 by 2 Example: Understandable Process

Step 3: Express as matrix multiplication (1st and 2nd step):

A = [2 1
6 8] E−3R1+R2

A = [ 1 0
−3 1] [2 1

6 8] = [2 1
0 ] ≜ U .

E− 1
5 R2+R1

U = [1 −1/5
0 1 ] [2 1

0 5] = [2 0
0 5] = D .

Thus   E 1
5 R2

E 1
2 R1

E− 1
5 R2+R1

E−3R1+R2
A = I2 .

E 1
5 R2

E 1
2 R1

D = I2 .

Thus   A−1 = E 1
5 R2

E 1
2 R1

E− 1
5 R2+R1

E−3R1+R2
= [1 0

0 1/5] [1/2 0
0 1] [1 −1/5

0 1 ] [ 1 0
−3 1] = [ □ □

□ □ ]

Step 4: Compute inverse by the elementary matrices 

[2 1
6 8] [2 1

0 5] [2 0
0 5]

Step 1 & 2: GE.
−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [1 0

0 1]∞I
∞

∞
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2 by 2 Example: Simplified Process, i.e., Algorithm 1

Step 3 Record elementary matrices in Step 1&2

[2 1
6 8] [2 1

0 5] [2 0
0 5]

Step 1 & 2: GE.
−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [1 0

0 1]



2 by 2 Example: Simplified Process, i.e., Algorithm 1

Step 3 Record elementary matrices in Step 1&2
E1 = E−3R1+R2

= [ 1 0
−3 1] E2 = E− 1

5 R2+R1
= [1 −1/5

0 1 ] .

E3 = E 1
2 R1

= [1/2 0
0 1], E4 = E 1

5 R2
= [1 0

0 1/5] .

  A−1 = E4E3E2E1 = [1/2 0
0 1] [1 0

0 1/5] [1 −1/5
0 1 ] [ 1 0

−3 1] = [ □ □
□ □ ]

Step 4: Write the inverse by formula (9.1).

[2 1
6 8] [2 1

0 5] [2 0
0 5]

Step 1 & 2: GE.
−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [1 0

0 1]o 0

∵d 少
》 x



2 by 2 Example: Algorithm 1 with Multiplication Trick

  A−1 = E4E3E2E1 = [1/2 0
0 1] [1 0

0 1/5] [1 −1/5
0 1 ] [ 1 0

−3 1] = [ □ □
□ □ ]

You can use definition to perform multiplication. 

But these are elementary matrices; faster way? Row operation!

  [1 −1/5
0 1 ] [ 1 0

−3 1] ⟺ Applying  to the matrix  , 

So we get   

− 1
5 R2 + R1 A1 = [ 1 0

−3 1]
A2 = [8/5 −1/5

−3 1 ]

∅

→

o
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2 by 2 Example: Algorithm 1 with Multiplication Trick

  A−1 = E4E3E2E1 = [1/2 0
0 1] [1 0

0 1/5] [1 −1/5
0 1 ] [ 1 0

−3 1] = [ □ □
□ □ ]

You can use definition to perform multiplication. 

But these are elementary matrices; faster way? Row operation!

  [1 −1/5
0 1 ] [ 1 0

−3 1] ⟺ Applying  to the matrix  , 

So we get   

− 1
5 R2 + R1 A1 = [ 1 0

−3 1]
A2 = [8/5 −1/5

−3 1 ]
Applying  to the matrix , so we get  [1 0

0 1/5] [8/5 −1/5
−3 1 ] ⟺ 1

5 R2 [8/5 −1/5
−3 1 ] A3 = [ 8/5 −1/5

−3/5 1/5 ]
Applying  to the matrix , so we get  [1/2 0

0 1] [ 8/5 −1/5
−3/5 1/5 ] ⟺ 1

2 R1 [ 8/5 −1/5
−3/5 1/5 ] A4 = [8/10 −1/10

−3/5 1/5 ]
Observation: Same sequence of operations as GE.  



Algorithm 2: Applying Same Operations to I

Module 2: Apply same operation to I.

[1 0
0 1] [ 1 0

−3 1] [8/5 −1/5
0 5 ]−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [8/10 −1/10

−3/5 1/5 ]
  A−1 = E 1

5 R2
E 1

2 R1
E− 1

5 R2+R1
E−3R1+R2

I2

[2 1
6 8] [2 1

0 5] [2 0
0 5]

  Module 1: GE.
−3R1 + R2

− 1
5 R2 + R1

1
2 R1

1
5 R2 [1 0

0 1]
A
⼀
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Algorithm 2

Module 2: Apply same operation to I.

  Module 1: GE.    A
op 1⟶ □ op 2⟶ □ … op k ⟶ In .

   In
op 1⟶ □ op 2⟶ □ … op k ⟶ A−1 .



Algorithm 2

Module 2: Apply same operation to I.

  Module 1: GE.    A
op 1⟶ □ op 2⟶ □ … op k ⟶ In .

   In
op 1⟶ □ op 2⟶ □ … op k ⟶ A−1 .

Algorithm 2: Apply GE to [A, In]

    [A, In]
op 1⟶ □ op 2⟶ □ … op k ⟶ [In, A−1] .

Justification: GE is essentially multiplying , 
Applying to  leads to .  
Thus Applying to  leads to 

A−1

A In
In A−1 .

]
E

only work for the case that Alexists
.

(next page )



Remark .
No columnexchange isalowedwhen computng

A
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Algorithm 2: a 3 by 3 Example

Problem: Find the inverse of

Solution:

Thus the inverse of A is

∞
Oo
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Summary of II. 1 Algorithms for Computing Inverse

1) Algorithm 1: compute  by   . 
Here ,  are elementary matrices during GE  
 (to get an identity matrix)  

Bottom line:  
Do you know how to get , and multiply matrices? 
If so, then you know how to compute 

A−1 A−1 = Ep…E2E1
E1, …, Ek Ek+1, Ek+2, …, Ep

Ei, ∀i
A−1

O O

→
e



Summary of II. 1 Algorithms for Computing Inverse

1) Algorithm 1: compute  by   . 
Here ,  are elementary matrices during GE  
 (to get an identity matrix)  

Bottom line:  
Do you know how to get , and multiply matrices? 
If so, then you know how to compute 

A−1 A−1 = Ep…E2E1
E1, …, Ek Ek+1, Ek+2, …, Ep

Ei, ∀i
A−1

2) Algorithm 2: compute   by 
applying elementary operations to  

Bottom line:  
Do you know how to conduct GE?  
If so, then you know how to compute 

A−1 = Ep…E2E1In
In .

A−1

Reminder: 
Inverse may not exist

θ
menep - op

⇌
o ∞

Loperation
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Appendix: Another Proof of 
“Inverse Exists iff n pivots” ∞

[ Reading moterial ]



Remark on Difficulties

First, right inverse.
  Use GE matrix representation, can only prove: 
   If there are n pivots, then there exists left inverse of A. 
  Need to: a) use GJE to [A, I] to show right inverse exists; 
                 b) Then show left inverse = right inverse. 

Second, not easy to prove the reverse direction: 
If A is invertible, then there must be n pivots. 

Method 1 (Textbook): prove by contradiction; 
    requires 4 steps; requires deeper understanding of GE.  

Method 2 (next): use PLU decomposition 
    



When is A Invertible?

Question 1: When is A invertible?

PA = LU,
We will utilize the theorem in Lec 9 to answer the question.

where P is permutation matrix, L is lower triangular, U is upper triangular.
o

Aafuaffuiokep
——



Recall: Two Properties Learned Before

Property 2: Permutation matrix is invertible.

Property 1: Product of invertible matrix is invertible.



When is A Invertible? First Lemma

Lemma 1: A is invertible iff U is invertible.

Proof: “If part”. If  is invertible, then U

Suppose PA = LU .
Fact:  are invertible.P, L

“Only if part”. If  is invertible, then A



When is A Invertible? Second lemma

Lemma 2:  is invertible iff , U uii ≠ 0 ∀i ∈ {1,2,…, n} .

Fact:  is an upper triangular matrix.U
Thus Lemma 2 holds due to Property 9.2 in earlier slides.

Combine Lemma 1 and Lemma 2, 
A is invertible  U is invertible; 
                        , 

⟺
⟺ uii ≠ 0 ∀i ∈ {1,2,…, n} .



When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange)

A → A1 → A2… → U U is upper triangular.

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1. 
Then A is invertible iff all diagonal entries of U are nonzero; 



When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange)

A → A1 → A2… → U U is upper triangular.

Answer 1: A is invertible iff 
A has n pivots (assuming A is n by n matrix). See also Sec 2.5 of Strang’s book;  

2nd bullet in the beginning of Sec 2.5. 

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1. 
Then A is invertible iff all diagonal entries of U are nonzero; 

Recall: Non-zero diagonal entries of U are the pivots (of A).



Summary Today (write Your Own)

One sentence summary:

Detailed summary:



Summary Today (of Instructor)

One sentence summary:

Detailed summary:

We study the test conditions and computation of inverse.

1. Test condi9ons 
   —Algorithm test: n pivots 
   —Equa8on test: Ax = 0 has a unique solu8on 
   —can be wriRen as product of elementary matrices 

2. Expressions and computa9on of inverse 
—Expression  

       —Algorithm 1: Use (10.1). 
       —Algorithm 2: apply GE to [A, I] to get [I, ] 

3. Time complexity       
        —Vector addi8on and mul8plica8on: O(n) 
        —Matrix-vector mul8plica8on:  
        —Matrix-matrix mul8plica8on:  
        —Gaussian elimina8on: 

A−1 = Ep…E2E1 . (10.1)

A−1

O(n2)
O(n3)

O(n3)

∞
⼀

⇌
⼀
o I not eory .

b
⇌⼀
⼀⼀

(not
→ ey

0 1 take the⇌
A7X1-⑩



Mied 6Sr
-

.

16 :30-83

IHu 3 redeased soon
.

⼀

Chek-m
⼀
⼀


