Lecture 10

Solving Square Linear System V:
Existence and Expression of Inverse
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I Today’s Lecture: Key Questions

Consider a square linear system AX=Db

Theorem If A is invertible, then the linear system has a unique solution x = A7,

Question 1: When is A invertible?

Question 2: How to Express/Compute A~19
(if exists)

Will provide an answer today.



Today’s Lecture: Outline

Today ... Existence and expression/computation of inverse.

1. Existence of Inverse
2. Expressions and Computation of inverse

Strang’s book: Sec 2.5, 2.6

After this lecture, you should be able to

1. Tell when a matrix is invertible based on pivots
2. Express the inverse of an invertible matrix with the aid of elimination

3. Compute the inverse of a small matrix



I Remark & Reminder /%“‘ & @@

A student commented:

<Calculus is more about proofs

inear algebr eems to have few proofs, but more concepts.

Well...

Today, we will see some intense proofs.

If g@has 100 levels of difﬁculty@int@e only shows Iev
@Around level 3. i
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I Effect of Swapping Columns

Swapping columns —@entries @

Claim: Consider a linear system Ax = b..

Suppose A is obtained by exchanging column j and column k of A.
Suppose x* is a solution of Ax = b.

y* is obtained by exchanging the jth and kth entry of x*.
Then y* is a solution of Ay = b.

vaappm 1 & C2 of A. (2.1.3)
solutlon X = @ —> solution y = @)

Fg 2: SwappingC3 & C5%f A.
solution x = (3,8,(/,12) —> solution y = (3, 8,@ 1¢7




Only Two Cases of Final Form

—

Claim [f we solve an n X n sauare system by Gauss-Jordan
Elimination witlh: column exchange, then at the end we obtain
one of the two forms:

Form 1: I,
L, F
0 B
Here Bis a (n — k) X (n — k) matrix,

Fis a k X (n — k) matrix.

Remark: If w obtain
then mifm not needed.

\
N —

Form 2:




I What You (Should) Know by Now

First, how to calculate b

for square linear sy:

Highlight: no missing case! Fle Pom
B3ased on a proof! Cl /C] 1F

o g,

@ow to solve QNY>square Im&ar sygtem -

= H< = B Xt~ 1A

(Suppose you know how tﬁom A =05 1. %4
of the final solutions to account for column exchange)

Remark: Fo@@e’llMl ec 11&12,
em Study more in Lec

N —




Terminology: Gauss Elimination and
Gauss-Jordan Elimination

So far, we have been usingGauss Eliminafions to describe the
whole process of solving linear system, for simplicity.

More rigorous terms: Pocoll, (Lec 09)
- ﬁ
—9 | I |
Gauss Elimination: (ase | /@/ ;E]WL——*O(L;
lz%f;‘) stop at upper triangular matrix. i o
Y (then use back substitution on equations S P\ (e |F
Jovionts ( X ) G2 @/‘lfl %ﬁ%
°€_ gauss-Jordan limination: GVE

G

“continue to eliminate entries above pivots™

Gauss-Jordan Elimination ith column exchange™
~Use column exchange 1o ensure diagonaf entries to have 1’s.

«_Remark>Without column exchange, GJE can solve the linear system too.
(Discuss in later lectures)




Part | Inverse of A:




I Outline of This Part

Outline of this part:

Test of invertibility:
)i ot

1) by equation Ax=0
1) By €




I When is A Invertible?

Question 1: When is A invertible?







I When is A Invertible?

Question 1: When is A invertible?

, Non2ew olxﬁwl oxtres in fho fr-\
Claim 1: If n pivots exist in Gauss-Jordan elimination,
(then Ais invertible.  If P, te

Q. ther P
Claim 2: It A is invertible, then theregre@

&mss—Jordan elimination( i colu~ excloya)

Answer 1: A is invertible iff
A has n pivots (assuming A is n by n matrix).




I Left Inverse and Right Inverse

e

Definition (left inverse) Reol] Def of z/hvwe[\~

ljf BA= l thew \jiﬂﬁj/;m
(@ Co(,u{ *642 =

ffe -8
(2-] (6 (hverse T A

Definition (right inverse)

I]C Ag:l/ tLQ/\ _% - —y\/jlﬁf thuery c}[A
gi thverg, I]c BA s of A

od B Hny thve ef/ﬁ‘)
fen B )y He /Mflvth




Proof of Claim 1: Step 1
A as Product of Row Elementary Matrices

It there are n pivots

Gaussian-Jordan elimination (GJE) (both forward and backward)

A—->A 2 A...>U—- ...B — ... — 1

Corresponding elementary matrices: Ep, Ep_l, Y

Then the matrix representation of the whole GE process is

(?
— Al = Ep. . °E2E1 . [just one-side equation;

need extra argument.
Next slide]
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Domnder, For ooch step 0]: Ha ~
thak . Whot resalt/ dafinton prs gt

Does (t OWQW m the |ecrares 7

(G
o A=~
(e l'

It's MOT qust obowt ! cormect”,
bt w}p)%u “Use yesult af/wvd bep

E‘a Some bovks fevn R theortm “Lp fAA=L thea M=A", (S0 this clamm & Coyrect)
burt you o (o7 use & here .

Lf u;Jka theorews th other boops ) ollowad,
Hen evey reswlt (n this Gurge (sa be fmvd h One Seatory.
‘ Pﬂ)d‘" Ths s a dlrect wwﬂo& °f Theorem XX 1A Xx's book”
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Wt ® pave . A3, e

/[\"0 D. J\Mt WH}eolam\
defm(‘t‘w and condrams.

Even l\j\‘ school shndents
Con do these 2 steps

M (mp)y = -1
> A M

G Ao A M (3)
=@)m=1. eoo0 rmu‘



Proof of Claim 1: Step 2
Left Inverse is Invertible ===> ltself Invertible

9
EpEp—lElA — In : A — Ep. . .E2E1 .

| M 9 Dm’" {)W’Pﬂrif
e. MA=1 —> A l=M. M= B 0 anvestile

-~

Just left inverse. Need to show AM = [ ? Seems nontrivial?

Lemmallf MA = I, and M is invertible, then Al =M.

Proof: M3 ¢
M= 1 2 wla)=wT =5 A= @7 0
n ¢ = - :I- —[ -~
Tlen AM= MM %ﬁﬁ/‘\:lﬁbﬂ\;
MA=TL o iom dof f ks
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I Proof of Claim 2: Skipped

Claim 2: It A is invertible, then there are n pivots
in Gauss-Jdordan elimination.

p={
Proof: Skipped.

(See Strang’s book 5th edition page 88, &“T”f”m’
after /Reasoning in reverse™) &:)?

Need to prove by contradiction (&iE%).

(o FV"Vi (COP\Worosiﬂzz v, % )
JT <n ’r“"’“« thee A A OT Mervble
s ]’ Fj ot ol
- » O ©O
/vw' 19 SAOW‘, ]_f [;;L f;) S MT (/N/am'L[a,
© then A O MO (hvakf\‘klﬂ. (need exhe snfs;\




| | F=>Q
I When is A Invertible? oninges, ! Q:)’”’Q

Question 1: When is A invertible?

Answer 2: A is invertible iff ] < book
ee also Sec 2.5 of Strang’s book;
Ax = 0 has a unique soiution x = 0. 4h bulletin the beginning of Sec 2.5

<8 Proof:
‘(;____ “0 ]"]L Ax;_o Acs w\r’u $o(Mum, thow A BS lhvzrﬁ'%‘ (9!)

— (&nfm]»sﬂ\‘n) l]& As' ﬂ, thee AX=0 hos O or >l Soluttn.
p-0 32 -

S ony i kAT then An=b her ungue solun, (52)
Wi T AT (A=A h D x=ATh LA ND)=b,
J

You've $een ow of them

Vel Lcu.‘t,ﬁ ok
3 |
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/ S\quwe motrix A

! (/;h\VUi’?LLI /
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Recall: Two Cases for Square Systems

End of backward step of GJE

Coefficient matrix b
Case 1: 0]C
<) 0
0
0
_0_
1 0 o * = |0
0 1 0O * * Gk 0
< n pivots. : R 0
(Allow colurgin 0O O | .
Exchange) 0 0 0 0 0 O
0O O 0O O 0
0 0 0 0 o| LO_

.
xl — U,
correspond  J X2 = 0,,
to

X, = 0, ,

rxl_l — ,

correspond Xip = oo
0 lo=0
| 0=0

Remark: GE in the textbook does NOT perform column exchange.
Anyhow, here our goal is to study # of solutions, so column exchange is OK.

Claim: Consider Ax = 0. If less than n pivots, then Ax =0 has

Fomed. o gcrww‘ L,IT <N f)\uo‘ﬂ, ther Ax=)h fhes noow oo~maz’ colwhons

(9W"‘M» ‘,JL Loc D?)

“solution.



Part II Computing Inverse




I Outline of This Part

Outline of this Part:

—Inverse computation I§x Naive way.

—

—Inverse computation [I:
marter way by row operations.




I Expression of Inverse

Question 2a: How to Express Yo\ (if exists)

Answer: /g\
Suppose by, ...k, B 1, By, .., » are the elementary matrices

corresponding to the operations in GJE to get an identity matrix.
(if A invertible, then we indeed get identity matrix by GJE)

Then M3
A EE@ (10.1)

dClaim: A matrix is invertible i

it can be written as the product of elementary matrices. )




I Recall: Quadratic Equations [Q@J“‘j metens J

During middle school, when you learn quadratic equations, what
do you learn?

B —b+\/b2—4ac

X =
2a

Tosolve x*+4x+ 1 =0,
write it as (x + 2)? = 3,

Thengetx+2=\/§or —\/5.

| kKnow you know these. But...
What are them?
|l mean.... WHAT are them?



I Express v.s. Compute [QZDJ*'*_‘ﬁ motens ]

Express: a clear formula containing specific symbols with clear meanings.
Egi A~ '=U"L"'P.
—1 _
Eg2 A =E,...EE,
Eg3 The solution of Ax = bis x = A~'b when A is invertible

_ 2 _
Eg4 One root of ax? + bx+c = Qs x = b+ V2b dac
a




I Express v.s. Compute [Q@J"bﬁ moterts! J

Express: a clear formula containing specific symbols with clear meanings.
Egi A~ '=U"L"'P.
—1 _
Eg2 A =E,...EE,
Eg3 The solution of Ax = bis x = A~'b when A is invertible

_ 2 _
Eg4 One root of ax? + bx+c = Qs x = b+ V2b dac
a

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers.
Egi A~ ! = L,...E,E, can compute the inverse (next pages)
Eg2 GE can compute the solution
(no formula of the root needed)
Eg3 completing square (B2 57%) can compute roots of ax’+bx+c=0.
(no formula of the root)



I Express v.s. Compute [2204"*3 moterts! ]

Express: a clear formula containing specific symbols with clear meanings.
Egi A~ '=U"L"'P.
—1 _
Eg2 A =E,...EE,
Eg3 The solution of Ax = bis x = A~'b when A is invertible

_ 2 _
Eg4 One root of ax? + bx+c = Qs x = b+ V2b dac
a

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers.
Egi A~ ! = L,...E,E, can compute the inverse (next pages)
Eg2 GE can compute the solution 0f [eor S)SW"
(no formula of the seufmneeded)
Eg3 completing square (B2 57%) can compute roots of ax’+bx+c=0.
(no formula of the root)

Relation:

1) Expression can be used to compute, if each symbol can be computed.
2) But expressions do not have to be computable

e.qg., if it contains symbols that are not easy to compute (e.g. U‘l)

3) Algorithms can help derive expressions sometimes, e.g. GE —> Al



Computing Inverse

Question 2b: How to Compute VoS (i exists)

Algorithm 1 (compute A~ )
_Step 17 Forward elimination.

~ Run forward efimiation, till get upper triangular matrix U.
IF U contains zero diagonal entry:
STOP and report: No inverse.
ELSE Go to Step 2.

Stepﬁackward substitutigD
" Run backward substitution, till get identity mat




I Computing Inverse

Question 2b: How to Compute VoS (i exists)

Algorithm 1 (compute A ~!)

Step 1: Forward elimination.
Run forward elimination, till get upper triangular matrix U.
IF U contains zero diagonal entry:
STOP and report: No inverse.
ELSE Go to Step 2.

Step 2: Backward substitution.
Run backward substitution, till get identity matrix I, .

Step 3 Record elementary matrjces.
Record elementary matrices/E, ..., E;, WStep 1.

Record elementary matrice¢ E;. 1, 10, . )., Ep in Step 2.

Step 4: Compute inverse.
Compute A~} ;Eﬁla (10.2)




I2 by 2 Example: Understandable Process

Step 1 & 2(GE 1 |

2 1] Smer [2 1] 320 20 L 1o
6 8 0 5 0 5 0 1
Step 3: Express a ixmulMlicationtand 2nd step):
2 1] l1roolf2 1172 1] &
=1 e[S IR e

I =1/5112 1
ey ]

E%RZE%RID =1.




2 by 2 Example: Understandable Process

Stegwuse., _ | o
1 —3R, + R, 2 1 TRtk 0 e
5

. 5 . _2 %RZ _1 O_
( 6 8 lo 0 0 1

\\ Step 3: Express as{rrlaitrix multiplication (1st and 2nd step):

e

e

2 1 _ |1 ()Hzlzz\fé
A = 6 2 Earert =123 1] |6 8} 0 @

— | =

1 —usl2 11 2 o
E . — - =D.
~LRer, Y [o 1 ”o 5] [o 5]

EigEigD=1,.

Step 4: Compute inverse by th@ntary mat@

ThUS E%RzE%RlE—%R2+R1E—3R1+R2A — 12 .

B It o0 11/2 Of 1 =1/51 11 O
Thus A %E%RinE—%RZ+R1@_ [() 1/5] [O 1] [0 1 ][—3 1] [

eSS

-




I2 by 2 Example: Simplified Process, i.e., Algorithm 1

Ste_p1 8E 2: GE. ] | ) i 1 ) )
21 “3Ri+R 2 1 _§R2+R1> 2 0 ;e >1 0
6 8 0 5 0 5 0 1

Step 3 Record elementary matrices in Step 1&2



I2 by 2 Example: Simplified Process, i.e., Algorithm 1

Step 1 & 2: ;
2 1 2 1 v )10
6 3 0 5 0 1
Step 3 Record elementary matriq#;rin
1
L, = E—3R1+R2 — _3 (1)] L, = - 0
/ ~
E3=ELR=[1/2 O] E,=Ei, =
2 ™M §) | 512
Step 4: Write the inversehy formula (9.1).
_ 172 of[1 o 0
A'=EEEE, = -
Lo 0 1/5 1




I2 by 2 Example: Algorithm 1 with Multiplication Trick

1 ,A\ O- —
4 ,_|o 1|“1/5_|o 1 |

;
1_

!

You can usemto perform multiplication.

But these are elementary matrices; faster way”? Row operation!
10 Applying —le + R, to the matrix A; = L0
’ 3 1|l < 5 -3 1|
| 8/5 —1/5

Sowe get A, = 3 : ]

r—

4 ~ | ~ | r
el ? = B ‘fﬁz'ﬂe/ /.'Yg:
0 )J -3 1 30| T T ¢

N L




I2 by 2 Example: Algorithm 1 with Multiplication Trick

12 0l [t ollt =151 o
0 1|fo 15[]0 1 ||-3 1

You can use definition to perform multiplication.

But these are elementary matrices:; taster way”? Row operation!

1
[1 —1/5] [ 1 0] « Applying —§R2+R1 to the matrix A = [ 1 0] ,

0 1 |[|-31 -3 1
Sowe get A, = 8/§ - 11/5]
1 0] [8/5 =1/5 1 _|18/5 —=1/5 8/5 —1/5]
Appl —R, to th t A; =
_O 1/5] [_3 | — |o|oy|ng5 » 10 the matrix [_3 | ],soweget 3 [_3/5 1/5_
172 ol [ 8/5 —1/5 1 |85 -1/5 _|8/10 =1/10
0 1] [_3/5 1/5 ] < Applying 2R1 to the matrix [_3/5 1/5 ],so we get Ay = [_3/5 s |

Observation: Same sequence of operations as GE.



I Algorithm 2: Applying Same Operations to |

lel1: G 1
_ _ 1 _ - >Ry
3R +R ) [2 1| SRtR |2 () L, 1 O
\B 0 35 0o 5] o
d
Ao L
PY— N — ’
Module 2: A F/Iy same operatio/? to . \
A~ = Eip g Elip g E 3R +r,D . Le,
10l <3k+R, [ 1 0] —sR*r [8/5 —1/5]  [8/10 —1/10
<o =3 1 1o 5 =315 15

N
1}/
- E} |
l %/ o - Aﬂ



& AP =4
Spadel oo | Lot P=A. Thee A7A=1. (6]E
AE=kT
Checol we2 Lo P 1 Tlee AI=A
e =y

(A1) Aornh]
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I Algorithm 2

op 1 op 2

Module 1: GE. A — —

Module 2: Apply same operation to l.
op 1 op 2

[ —> —




I Algorithm 2

op 1 op 2 op k

Module 1: GE. A—[H—0d... — [ .

Module 2: Apply same operation to l.

op 1 op 2 opk |
GJE

Algorithm 2: Apply GBto [A, ] |

op |

o\nla work the Cew thot A~ exsts |
(next page)
Justification: GE is essentially multiplying A~
Applying to A leads to [,
Thus Applying to [, leads to AL
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we uee " GJE", WOT " GTE with Co b axdwje"’

b3

ofx

< ---

J



I Algorithm 2: a 3 by 3 Example

Problem: Find the inverse of A =

Solution:

[AlT] =

1
oo R

Thus the Inverse of Ais At =

o N O

oy O O

= N |

N

H, W O W

L

O O O M-

25

N[N

©C O or o

N

e

N[

= O O

= NN







I Summary of Il. 1 Algorithms for Computing Inverse

1) Algorithm 1: compute A~ by A~ = oo

Here £y, ..., By, Eyyys Egyos -+, B, are elementary matrices during GE
(to get an identity matrix)

Bottom line:

Do you know how to gel £.) Vi, and muRly matrices?
If so, then you know how to compute




I Summary of Il. 1 Algorithms for Computing Inverse

1) Algorithm 1: compute A~ by A™! = L, . .EE .

Here £y, ..., By, Eyyys Egyos -+, B, are elementary matrices during GE
(to get an identity matrix)

‘ o
Bottom line: 'N’Wk NY a'r Y
Do you know how to ge V1, and multiply matrices?
If so, then you know how to compuﬁ_A;/

—

Reminder:
] _1 ( Inverse may not exist
2) Algorithm 2: Fompute A7 =E,. . EE ] by
applying elementary operations to I

QVD*‘h

Bottom line:
Do you know how to Condu WM
f so, then you know how to Compute(A b




Appendix: Another Proof of
Inverse Exists iff n pivots




Remark on Difficulties

First, right inverse.
Use GE matrix representation, can only prove:
It there are n pivots, then there exists left inverse of A.
Need to: a) use GJE to [A, |] to show right inverse exists;
b) Then show left inverse = right inverse.

Second, not easy to prove the reverse direction:
It A is invertible, then there must be n pivots.

Method 1 (Textbook): prove by contradiction;
requires 4 steps; requires deeper understanding of GE.

Method 2 (next): use PLU decomposition



I When is A Invertible?

Question 1: When is A invertible?

We will utilize the theorem Iin Lec 9 to answer the question.

where P Is permutation matrix, L is lower triangular, U is upper triangular.

AT WA Ueto W

he. V\T/\W,




Recall: Two Properties Learned Before

Property 1: Product of invertible matrix is invertible.

Property 2. Permutation matrix is invertible.



When is A Invertible? First Lemma

Lemma 1: Ais invertible iff U is invertible.

Suppose PA = LU.
Fact: P, L are invertible.

Proof: “If part’. If U is invertible, then

“Only if part”. If A is invertible, then



When is A Invertible? Second lemma

Lemma 2: U is invertible iff , Vie {l,2,...,n}.

Fact: U is an upper triangular matrix.

Thus Lemma 2 holds due to Property 9.2 in earlier slides.

Combine Lemma 1 and Lemma 2,
A 1S Invertible < U Is invertible;
—u,#0, Vie (1,2,...,n}.



I When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange)

A —> Al —> AZ‘ .. —> U U is upper triangular.

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1.
Then A is invertible iff all diagonal entries of U are nonzero;



When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange)

A —> Al — AZ‘ . —> U U is upper triangular.

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1.
Then A is invertible iff all diagonal entries of U are nonzero;

Recall: Non-zero diagonal entries of U are the pivots (of A).

Answer 1: A is Invertible Iff

A has n pivots (assuming A is n by n matrix). |tk aRn



I Summary Today (write Your Own)

One sentence summary:

Detailed summary:



I Summary Today (of Instructor)

One sentence summary:

We study the@st conditiond and@of inverse.

Detailed summary:

1. S Teg conditions
- gorith+mtest; pi ‘X nDT @2

—jgm;g Ax = D has a unique solution /
—can be written as product of elementarymatrices
: : : /aD)
: tion of inverse LMTM
—Expression A~ = E . 10.1

D

—Algorithm 1: Use (10.1).
—Algorithm 2: apply GE @ to ge@

N
m
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e
q
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