Lecture 10

Solving Square Linear System V: Existence and Expression of Inverse

Instructor: Ruoyu Sun

Today's Lecture: Key Questions

Consider a square linear system *A***x** = **b**

Theorem If A is invertible, then the linear system has a unique solution $x = A^{-1}b$.

Question 1: When is A invertible?

Question 2: How to Express/Compute *A*[−]1? (if exists)

Will provide an answer today.

Today's Lecture: Outline

Today ... Existence and expression/computation of inverse.

- 1. Existence of Inverse
- 2. Expressions and Computation of inverse

Strang's book: Sec 2.5, 2.6

After this lecture, you should be able to

- 1. Tell when a matrix is invertible based on pivots
- 2. Express the inverse of an invertible matrix with the aid of elimination
- 3. Compute the inverse of a small matrix

A student commented:

Calculus is more about proofs;

Linear algebra seems to have few proofs, but more concepts.

Well...

Today, we will see some intense proofs.

If LA has 100 levels of difficulty, LA intro course only shows level 1-10. Today?) Around level 3. PKU LA Course: lenel (0

Part 0 Review

Effect of Swapping Columns

Then
$$
y^*
$$
 is a solution of $Ay = b$.
\nEg 1: Swapping C1 & C2 of A.
\nSolution $x = (1,2,3) \rightarrow$ solution $y = (\sqrt{3},2)$
\nEg 2: Swapping C3 & C5 of A.
\nsolution $x = (3,8,\sqrt{3},1,2) \rightarrow$ solution $y = (3,8,2,1,2)$

Eg 2: Swapping C3 & C5 of A. $\frac{238}{(1,1,2)}$ Solution $y = (3,8,2,1,2)$

Claim:/Only Two Cases of Final Form Claim
Relation If

Claim If we solve an $n \times n$ square system by Gauss-Jordan Elimination with column exchange, then at the end we obtain one of the two forms: 0 **laim:** Only Two C

aim If we solve an *n*

imination with column

ie of the two forms:

Form 1: I_n
 $[I_L$ F] Two Cases of Fi

lye an $n \times n$ square

scolumn exchange,

forms:

Claim If we solve an
$$
n \times n
$$
 square system
\nElimination with column exchange, then a one of the two forms:
\nForm 1: I_n
\nForm 2: $\begin{bmatrix} I_k & F \\ 0 & B \end{bmatrix}$
\nHere B is a $(n - k) \times (n - k)$ matrix,
\n F is a $k \times (n - k)$ matrix.
\n**Remark**: If we can obtain form 1,
\nthen **Column exchange is not needed.**

Remark: If we can obtain **Form 1**, then column exchange is not needed.

What You (Should) Know by Now

First, how to calculate number of solutions for ANY square linear system.

Remark: For writing solution set, we'll study more in Lec 11&12.

Terminology: Gauss Elimination and Gauss-Jordan Elimination

So far, we have been using Gauss Elimination to describe the whole process of solving linear system, for simplicity. More rigorous terms: <u>Recall</u> (Lec 09)

Gauss Elimination:

stop at upper triangular matrix. (then use back substitution on equations)

continue to eliminate entries above pivots.

Gauss-Jordan Elimination with column exchange

Use column exchange to ensure diagonal entries to have 1's.

Remark: Without column exchange, GJE can solve the linear system too. (Discuss in later lectures)

Part I Inverse of A:
Existence
Sec 2.5, Section "Singular versus Invertible" Existence

Outline of this part:

Test of invertibility: i) by pivots; **ne of This Par

ne of this par

of invertibility

) by pivots;

) by equation** line of this part:

interpresents of invertibility:

ii) by equation Ax=0

ii) by equation $Ax=0$

When is A Invertible?

Question 1: When is A invertible?

$$
\begin{bmatrix}\n\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z}\n\end{bmatrix}, \quad \mathbf{A}^{-1} \exists \text{ iff } a_{ii} \neq 0, \forall i.
$$

<u>Enaple</u>: A⁻¹ not exist;
but Q: i f0, tri. $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix},$ Prive it later.

When is A Invertible?

Question 1: When is A invertible?

nonzero digend entries in final form If P , then Q then A is invertible. **Claim 2**: If A is invertible, then there are n pivots in Gauss-Jordan elimination (with colum exclose). Solas for sufficient & ne cessey codin

 $i\in\mathbb{Z}$ if

Answer 1: A is invertible if A has n pivots (assuming A is n by n matrix).

See also Sec 2.5 of Strang's book; 2nd bullet in the beginning of Sec 2.5.

Left Inverse and Right Inverse

Definition (left inverse) If $BA = I$, then
left of A B A colled the
left threase of A .

$$
\begin{pmatrix}\n\hline\n\text{Recall Def of } \text{Inverse} \\
\hline\n\text{If AB = BA = 1, then} \\
\hline\n\text{A'} = \text{and A'} = B\n\end{pmatrix}
$$

Definition (right inverse)

If
$$
AB = J
$$
, then $B = -Wg$ that inverse of A .
Let of inverse If B is left, $hves = f$ A ,
and B is right, $hves = f$ A ,
then B is the inverse $+ A$

Proof of Claim 1: Step 1 A as Product of Row Elementary Matrices

If there are *n* pivots

Gaussian-Jordan elimination (GJE) (both forward and backward) $A \rightarrow A_1 \rightarrow A_2 \ldots \rightarrow U \rightarrow \ldots B_1 \rightarrow \ldots \rightarrow I_n$ $U =$ 1 * … * 0 1 … * \vdots \vdots \ddots \ast 0 0 … 1 \longrightarrow 1 0 … 0 0 1 … 0 \vdots \vdots \therefore 0 0 0 … 1 $= I_n$.

Corresponding elementary matrices: $E_p, E_{p-1},...,E_1$.

Then the matrix representation of the whole GE process is

$$
E_p E_{p-1} \dots E_1 A = I_n.
$$

$$
\stackrel{?}{\longrightarrow} A^{-1} = E_p...E_2E_1.
$$

[just one-side equation; need extra argument. Next slide]

 \underline{Oan} If n pilots, then A^{-1} \exists .

Proof Sketch:	Step 1	Use	6J - E to obtain	6J - E to obtain
π	$\frac{E_1}{1} + A_1 \xrightarrow{E_2} A_2 \rightarrow \cdots \xrightarrow{E_J} I$			
$\frac{P_1}{2}$	$\frac{E_1}{2}$	$\frac{E_2}{2}$		
$\frac{P_1}{2}$	$\frac{E_1}{2}$			
$\frac{P_1}{2}$	$\frac{E_1}{2}$			
$\frac{P_1}{2}$	$\frac{E_1}{2}$			
$\frac{E_1}{2}$	$\frac{E_1}{2}$			
$\frac{E_1}{2}$	$\frac{E_1}{2}$			
$\frac{E_1}{2}$				
$\frac{E_1}{2}$ </td				

Proof. Sketch:	n	p	10013	\n $\frac{94}{29}E_1 - E_1A = 1$ \n $\frac{3}{29}A^{-1}$ \n	5002
Conject	1	MA = 1	\n $\frac{3}{2}A^{-1}$ \n	1000	1000
Another proof:	MA = 1	BUT			
Example 1	MA = 1	BUT			
Example 2	MA = 1	BU = 1			
Example 3	MA = 1	PU = 1			
Example 4	200				
Example 5	200				
Second	1000				
Second	1000				
Second	1000				
Second	1000				
Quoint of the image	1000				
Quoint of the image	1000				

Reminder, For each step of the prof, think: What result/definition supports it?

 $It's NOT just about "Correct",$ but emphasize "Use result appeared befor. Eg. Some books here a theorem "If MA=I, then N=A", (so this claim is correct) If using theorems in other books is allowed, then every result in this course can be proved in one seaters.
"Proof: This is a direct corolley of Theorem XX in XX's book."

Conjecture	If $MA = J$, then $A^{-1} \exists$ [correct, but we do't prove if here. It's more complied 3.	
E _i 'S (hverthblo	Q product of thevertthic method	Q, \neg , \vec{E}_1 , is linearly ($E_f - E_i$) ⁻¹ = $E_i^{-1} - B_i^{-1}$.
So $AA^{-1} \text{ exists}$	Q, and $M^{-1} \exists$,	
OM	Y	Q, and $M^{-1} \exists$,
Chom	Y	MA = J, and $M^{-1} \exists$,
theo $A^{-1} \exists$		

Lemma 1 If $MA = J$, and $M^{-1} = J$,																		
Proof:	\n $\frac{G_{top}}{M}$ $\frac{D_{PQ}F_{A} + b_{M} - G_{L}}{M_{A} = J_{A}F_{A}}$ \n	\n $\frac{M_{A} = J_{A}F_{A}F_{A}}{M_{A} = J_{A}F_{A}}$ \n	\n $\frac{M_{A} = J_{A}F_{A}F_{A}}{M_{A} = J_{A}F_{A}}$ \n	\n $\frac{M_{A} = J_{A}F_{A}F_{A}}{M_{A} = J_{A}F_{A}}$ \n	\n $\frac{M_{A}F_{A}}{M_{A} = J_{A}F_{A}}$													

Proof of Claim 1: Step 2 Left Inverse is Invertible ===> Itself Invertible

$$
E_p E_{p-1} \dots E_1 A = I_n \Longrightarrow A^{-1} = E_p \dots E_2 E_1.
$$

i.e. $MA = I_n \Longrightarrow A^{-1} = M$. $\overline{M} = E_p - \overline{E}$, a **inve**

Just left inverse. Need to show $AM = I_n$? Seems nontrivial?

Lemmal if $MA = I_n$, and M is invertible, then $A^{-1} = M$. Proof: Since $M^{-1} \ni s \circ ...$
 $MA = I \Rightarrow M^{-1}(MA) = M^{-1}I \Rightarrow A = M^{-1}(0)$

Then $A \cdot M \stackrel{(1)}{=} M^{-1} M = I$.
 $MA = I$ (Gradition)

Claim 2: If A is invertible, then there are n pivots in Gauss-Jordan elimination.

III Gauss-Jordan elimination.

Proof: Skipped. (not prove it)

(See Strang's book 5th edition page 88, Contra position after "Reasoning in reverse")

Need to prove by contradiction (反证法). To prive. (Contropositive & Z)

If $\le n$ pivots. then A B NOT Avertible. $A \xrightarrow{\text{no.} \omega A} \left(\begin{array}{ccc} 1 & F \\ O & O \end{array} \right) \xrightarrow{\text{no.} \omega A B}$ Need to show: If $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$ is not shownible.
Then A is not invertible. [need extremelys]

Remote. For square matrix A,
A is invertible

$$
\Leftrightarrow Ax=0 \text{ has unique solution}
$$

$$
\Leftrightarrow Ax=b \text{ has unique solution for any } b,
$$

Recall: Two Cases for Square Systems

Part II Computing Inverse

Sec 2.5, Section "Calculating A^{-1} by …"

Outline of this Part:

—Inverse computation Is Naive way. Naive way.

—Inverse computation II: Smarter way by row operations. utline of this Part
Thverse computa
Thverse computa
Smarter way b

Expression of Inverse

Question 2a: How to Express A^{-1} ? (if exists)

Answer:

Suppose $\,E_1, \, ... , E_k, \, E_{k+1}, E_{k+2}, \, ... , E_p$ are the elementary matrices corresponding to the operations in GJE to get an identity matrix. (if A invertible, then we indeed get identity matrix by GJE)

Then $M \geq$ se

V to Express A^{-1} ?

..., E_p are the elementary matrices

GJE to get an identity matrix.

i dentity matrix by GJE) **Expression of Inverse**
 LUESTION 2a: How to Express A^{-1} ?
 LUESTION 2a: How to Express A^{-1} ?

phose $E_1, ..., E_k, E_{k+1}, E_{k+2}, ..., E_p$ are the elementary matrices
 A invertible, then we indeed get identity matrix by GJE

Then

Claim: A matrix is invertible iff it can be written as the product of elementary matrices. Then

Then

it can b $E_p \ldots E_2 E_p$
s invertible
as the prod

Recall: Quadratic Equations [Reading material]

During middle school, when you learn quadratic equations, what do you learn?

$$
x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
$$

To solve
$$
x^2 + 4x + 1 = 0
$$
,
write it as $(x + 2)^2 = 3$,
Then get $x + 2 = \sqrt{3}$ or $-\sqrt{3}$.

I know you know these. But… What are them? **I mean…. WHAT are them?**

Express v.s. Compute [Reading material]

Express: a clear formula containing specific symbols with clear meanings. **Eg1** $A^{-1} = U^{-1}L^{-1}P$. **Eg2** $A^{-1} = E_p...E_2E_1$ **Eg3** The solution of $Ax = b$ is $x = A^{-1}b$ when A is invertible **Eg4** One root of $ax^2 + bx + c = 0$ is $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ 2*a*

Express v.s. Compute [Reading material]

Express: a clear formula containing specific symbols with clear meanings. **Eg1** $A^{-1} = U^{-1}L^{-1}P$. **Eg2** $A^{-1} = E_p...E_2E_1$ **Eg3** The solution of $Ax = b$ is $x = A^{-1}b$ when A is invertible **Eg4** One root of $ax^2 + bx + c = 0$ is $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ 2*a*

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers. **Eg1** $A^{-1} = E_p...E_2E_1$ can compute the inverse (next pages) **Eg2** GE can compute the solution (no formula of the root needed) **Eg3** completing square (配方法) can compute roots of $ax^2 + bx + c = 0$.

(no formula of the root)

Express v.s. Compute [Reading material]

Express: a clear formula containing specific symbols with clear meanings. **Eg1** $A^{-1} = U^{-1}L^{-1}P$. **Eg2** $A^{-1} = E_p...E_2E_1$ **Eg3** The solution of $Ax = b$ is $x = A^{-1}b$ when A is invertible **Eg4** One root of $ax^2 + bx + c = 0$ is $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ 2*a*

Compute: a procedure (algorithm) to obtain desired answers for any concrete numbers. **Eg1** $A^{-1} = E_p...E_2E_1$ can compute the inverse (next pages) Eg2 GE can compute the solution of livear system (no formula of the *solution* needed) **Eg3** completing square (配方法) can compute roots of $ax^2 + bx + c = 0$. (algc
can c
e sol
solution
(配方

(no formula of the root)

Relation:

- 1) Expression can be used to compute, if each symbol can be computed.
- 2) But expressions do not have to be computable
- e.g., if it contains symbols that are not easy to compute (e.g. U^{-1})
- 3) Algorithms can help derive expressions sometimes, e.g. GE \longrightarrow A^{-1}

Computing Inverse

Question 2b: How to Compute A^{-1} ? (if exists) Computing Inverse **Computing Inverse**
 **Question 2b: Ho

Algorithm 1 (computing 1)**
 **Run forward elimination, till get

IF U contains zero diagonal ent

STOP and report: No inverse Question 2b:** How to Compute
 Algorithm 1 (compute A^{-1} **)**
 Step 1 Forward elimination.

Run forward elimination, till get upper triangular matrix IF U contains zero diagonal entry:

STOP and report: No inverse.

ELS

$\bm{\mathsf{Algorithm~1~(compute~A^{-1})}}$

Step 1. Forward elimination.

Run forward elimination, till get upper triangular matrix U.

IF U contains zero diagonal entry:

STOP and report: No inverse.

ELSE Go to Step 2.

Step 2: **Backward substitution.**

Run backward substitution, till get identity matrix I_n **.**

Computing Inverse

Question 2b: How to Compute A^{-1} ? (if exists)

Algorithm 1 (compute A^{-1})

Step 1: **Forward elimination**.

 Run forward elimination, till get upper triangular matrix U. IF U contains zero diagonal entry: STOP and report: No inverse.

ELSE Go to Step 2.

Step 2: **Backward substitution.**

Run backward substitution, till get identity matrix I_n .

Step 3 Record elementary matrices.

Record elementary matrices $E_1, ..., E_k$ in Step 1. Record elementary matrices $E_{k+1}, E_{k+2}, ...$, E_p in Step 2. erse.

Il get identity mandridge est dentity mandridge est density mandridge est density mandridge est de la partie

de density de la partie de itution, till get identity matrices.

y matrices E_1 , ...

y matrices E_{k+1} ,

erse E_k $E_2 E_1$...

Step 4: **Compute inverse**. $A^{-1} = E_p \dots E_2 E_1$. (10.2)

Compute

2 by 2 Example: Understandable Process

2 by 2 Example: Understandable Process

2 by 2 Example: **Understanding**
\nStep 1 8.2: GE.
\n
$$
\begin{bmatrix}\n2 & 1 \\
6 & 8\n\end{bmatrix}\n\xrightarrow{-3R_1 + R_2}\n\begin{bmatrix}\n2 & 1 \\
0 & 5\n\end{bmatrix}\n\xrightarrow{\frac{1}{5}R_2 + R_1}\n\begin{bmatrix}\n2 & 0 \\
0 & 5\n\end{bmatrix}\n\xrightarrow{\frac{1}{5}R_2}\n\begin{bmatrix}\n1 & 0 \\
0 & 1\n\end{bmatrix}
$$
\nStep 3: Express as matrix multiplication (1st and 2nd step):
\n
$$
A = \begin{bmatrix}\n2 & 1 \\
6 & 8\n\end{bmatrix}\n\xrightarrow{E_{-3R_1 + R_2} A = \begin{bmatrix}\n1 & 0 \\
-3 & 1\n\end{bmatrix}\n\begin{bmatrix}\n2 & 1 \\
6 & 8\n\end{bmatrix}\n=\n\begin{bmatrix}\n2 & 1 \\
0 & 1\n\end{bmatrix}\n=\n\begin{bmatrix}\n2 & 1 \\
0 & 5\n\end{bmatrix}\n=\n\begin{bmatrix}\n2 & 0 \\
0 & 5\n\end{bmatrix}\n=\nD.
$$
\n
$$
E_{\frac{1}{5}R_2}E_{\frac{1}{2}R_1}E_{\frac{1}{2}R_1}D = I_2.
$$
\nStep 4: Compute inverse by the elementary matrices
\nThus $E_{\frac{1}{5}R_2}E_{\frac{1}{2}R_1}E_{-\frac{1}{5}R_2 + R_1}E_{-3R_1 + R_2}A = I_2$.
\nThus $A^{-1} = \frac{E_{\frac{1}{5}R_2}E_{\frac{1}{2}R_1}E_{-\frac{1}{5}R_2 + R_1}E_{-3R_1 + R_2}}{2} = \frac{\begin{bmatrix}\n1 & 0 \\
0 & 1/5\n\end{bmatrix}\n\begin{bmatrix}\n1/2 & 0 \\
0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n1 & -1/5 \\
0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n1 & 0 \\
-3 & 1\n\end{bmatrix}\n\begin{bmatrix}\n\begin{bmatrix}\n\square & \square \\
\square & \square\n\end{bmatrix}\n\end{bmatrix}$

Step 4: Compute inverse by the elementary matrices

Thus
$$
E_{\frac{1}{5}R_2}E_{\frac{1}{2}R_1}E_{-\frac{1}{5}R_2+R_1}E_{-3R_1+R_2}A = I_2
$$
.
\nThus $A^{-1} = \underbrace{E_{\frac{1}{5}R_2}E_{\frac{1}{2}R_1}E_{-\frac{1}{5}R_2+R_1}E_{-3R_1+R_2}}_{\text{max}} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1/5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}}_{\text{max}} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}}_{\text{max}}$

2 by 2 Example: Simplified Process, i.e., Algorithm 1

$\overline{}$ 2 1 68] 2 1 $0 \quad 5$ [2 0 $0 \quad 5$ **Step 1 & 2: GE.** $-3R_1 + R_2 \left[2 \quad 1\right]$ $-\frac{1}{5}$ $R_2 + R_1$ 1 $\frac{1}{2}R_1$ 1 $\frac{1}{5}R_2$ $\overline{}$ 1 0 $0 \quad 1$

Step 3 Record elementary matrices in Step 1&2

2 by 2 Example: Simplified Process, i.e., Algorithm 1

2 by 2 Example: Algorithm 1 with Multiplication Trick

2 by 2 Example: Algorithm 1 with Multiplication Trick
\n
$$
A^{-1} = \underbrace{\mathcal{L}_4 E_3 E_2 E} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & -1/5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$
\nYou can use definition to perform multiplication.
\nBut these are elementary matrices; faster way? Row operation
\n
$$
\begin{bmatrix} 1 & -1/5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \Leftrightarrow \begin{array}{c} \text{Applying } -\frac{1}{5}R_2 + R_1 \text{ to the matrix } A_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \\ \text{So we get } A_2 = \begin{bmatrix} 8/5 & -1/5 \\ -3 & 1 \end{bmatrix} \end{array}
$$

2 by 2 Example: Algorithm 1 with Multiplication Trick

$$
A^{-1} = E_4 E_3 E_2 E_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & -1/5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} \square & \square \\ \square & \square \end{bmatrix}
$$

You can use definition to perform multiplication.

But these are elementary matrices; faster way? Row operation!

$$
\begin{bmatrix} 1 & -1/5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \Longleftrightarrow \begin{array}{c} \text{Applying } -\frac{1}{5}R_2 + R_1 \text{ to the matrix } A_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \\ \text{So we get } A_2 = \begin{bmatrix} 8/5 & -1/5 \\ -3 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \\ 0 & 1/5 \end{bmatrix} \begin{bmatrix} 8/5 & -1/5 \\ -3 & 1 \end{bmatrix} \Longleftrightarrow \text{Applying } \frac{1}{5}R_2 \text{ to the matrix } \begin{bmatrix} 8/5 & -1/5 \\ -3 & 1 \end{bmatrix}, \text{ so we get } A_3 = \begin{bmatrix} 8/5 & -1/5 \\ -3/5 & 1/5 \end{bmatrix} \\ \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 8/5 & -1/5 \\ -3/5 & 1/5 \end{bmatrix} \Longleftrightarrow \text{Applying } \frac{1}{2}R_1 \text{ to the matrix } \begin{bmatrix} 8/5 & -1/5 \\ -3/5 & 1/5 \end{bmatrix}, \text{ so we get } A_4 = \begin{bmatrix} 8/10 & -1/10 \\ -3/5 & 1/5 \end{bmatrix}
$$

Observation: Same sequence of operations as GE.

Algorithm 2: Applying Same Operations to I

$$
A = \begin{pmatrix} \frac{E_1}{1} & \frac{E_2}{1} & \frac{E_3}{1} & \frac{E_4}{1} & \frac{E_5}{1} & \frac{E_6}{1} & \frac{E_7}{1} & \frac{E_8}{1} & \frac{E_7}{1} & \frac{E_8}{1} & \frac{E_9}{1} & \frac{E_1}{1} & \
$$

 $[A. I] \xrightarrow{A'} [I A']$

 $E_1E_2-E_1$ A^{-1} Computing *S*TE 5ame seg. of operation differer starting point Ao I ... Decouple nuited meters P , and operate \ominus_P .

Algorithm 2

Module 1: GE. *A* $\xrightarrow{op1}$ **1** □ **op** ⟶ **2** □ … **op** ⟶ **k** *In* .

Module 2: Apply same operation to I. I_n **op** \longrightarrow **1** □ **op** ⟶ **2** □… **op** ⟶ **k** *A*−¹ .

Algorithm 2

Module 1: GE. *A* $\xrightarrow{op1}$ **1** □ **op** ⟶ **2** □ … **op** ⟶ **k** *In* .

Module 2: Apply same operation to I. I_n **op** \longrightarrow **1** □ **op** ⟶ **2** □… **op** ⟶ **k** *A*−¹ . **Algorithm 2**: Apply \mathbb{G} to $[A, I_n]$ 0 -
GJE
65 GJE

$$
[A, I_n] \xrightarrow{\text{op } 1} \square \xrightarrow{\text{op } 2} \square \dots \xrightarrow{\text{op } k} [I_n, A^{-1}].
$$
\n**Justification**: GE is essentially multiplying A^{-1} ,
\nApplying to A leads to I_n .

\nThus Applying to I_n leads to A^{-1} .

Column exchange is NOT needed. $\left[\begin{array}{cccc} \mathbf{1} & \$ (i.e. column exchange is needed). then you won't get n pivots the the end, which implies A⁻¹ does NOT exist. Since calumn exchange is not needed for computing A. we use "GJE", NOT "GJE with column exchange".

Algorithm 2: a 3 by 3 Example

Problem: Find the inverse of $A = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$ **Solution:** Thus the inverse of A is $A^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$ $[A|I] = \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & 1 & 0 \\ 0 & -6 & -3 & -2 & 0 & 1 \end{bmatrix}$
 $\rightarrow \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & 0 & \frac{1}{2} & -\frac$ \rightarrow $\begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 2 & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 6 & 1 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} \sqrt[4]{0} & 0 & \sqrt{\frac{1}{2}} & -\frac{1}{2} & \frac{1}{2} \\ 0 & \sqrt[4]{0} & \sqrt{\frac{1}{4}} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & \sqrt[4]{0} & \frac{1}{6} & \frac{1}{2} & \$

 Q_i Conqute A^{-1} . $[A|1] = \begin{bmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 \\ 2 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Summary of II. 1 Algorithms for Computing Inverse

1) **Algorithm 1**: compute A^{-1} by $A^{-1} = E_n \dots E_2 E_1$ Here $E_1, ..., E_k$, $E_{k+1}, E_{k+2}, ..., E_p$ are elementary matrices during GE (to get an identity matrix) A^{-1} by $A^{-1} = E_p$. $E_2 E_1$

Bottom line:

Do you know how to get E_i , $\forall i$, and multiply matrices? If so, then you know how to compute E_i) $\forall i$ $E_{k+1}, E_{k+2}, ..., E_p$ are elementary r

y matrix)

<u>how to get E_i </u> $\forall i$, and multix
 M_i know how to compute A^{-1} multiples

Summary of II. 1 Algorithms for Computing Inverse

1) **Algorithm 1**: compute A^{-1} by $A^{-1} = E_p...E_2E_1$. Here $E_1, ..., E_k$, $E_{k+1}, E_{k+2}, ..., E_p$ are elementary matrices during GE (to get an identity matrix) **Bottom line**: Do you know how to get E_i , $\forall i$, and multiply matrices? If so, then you know how to compute *A*−¹ A^{-1} *by* $A^{-1} = E_p...E_2E_1$ 2) **Algorithm 2:** compute $A^{-1} = E_n...E_2E_1I_n$ by applying elementary operations to *In* . **Bottom line**: Bottom line:

Do you know how to conduct GE? If so, then you know how to compute *A*−¹ = *Ep*…*E*2*E*1*In* ∅ *A*−¹ Reminder: Inverse may not exist **Summary of II. 1 Algorithms for Computing Inv**

1) **Algorithm 1**: compute A^{-1} by $A^{-1} = E_p...E_2E_1$.

Here $E_1,...,E_k$, $E_{k+1}, E_{k+2},..., E_p$ are elementary matrices during GE

(to get an identity matrix)
 Bottom line:

Do metra ref. of of 1) Algorithm 1: compute A^{-1} by $A^{-1} = E_p...E_2E_1$

Here $E_1,...,E_k$, $E_{k+1}, E_{k+2},..., E_p$ are elementary matrices during GE

(to get an identity matrix)

Bottom line:

Do you know how to ge(E_i) vi, and multiply matrices?

I Loperation - $\frac{C_p...D_2D_1P_n}{\text{cons to } I_n}.$ Λ matrix

Appendix: Another Proof of "Inverse Exists iff n pivots" ∞ [Reading moterial]

First, right inverse.

 Use GE matrix representation, can only prove: If there are n pivots, then there exists left inverse of A. Need to: a) use GJE to [A, I] to show right inverse exists; b) Then show left inverse = right inverse.

Second, not easy to prove the reverse direction: If A is invertible, then there must be n pivots.

Method 1 (Textbook): prove by contradiction; requires 4 steps; requires deeper understanding of GE.

Method 2 (next): use PLU decomposition

Question 1: When is A invertible?

We will utilize the theorem in Lec 9 to answer the question.

where P is permutation matrix, L is lower triangular, U is upper triangular.

$$
A^{-1}3
$$
 $10^{-1}3$ $10^{-1}3$ $10^{-1}3$

Property 1: Product of invertible matrix is invertible.

Property 2: Permutation matrix is invertible.

Lemma 1: A is invertible iff U is invertible.

Suppose $PA = LU$. Fact: *P*, *L* are invertible.

Proof: "**If part**". If *U* is invertible, then

"**Only if part**". If *A* is invertible, then

Lemma 2: *U* is invertible iff $u_{ii} \neq 0$, $\forall i \in \{1,2,...,n\}$.

Fact: U is an upper triangular matrix.

Thus Lemma 2 holds due to Property 9.2 in earlier slides.

Combine Lemma 1 and Lemma 2, A is invertible \Longleftrightarrow U is invertible; $\iff u_{ii} \neq 0, \forall i \in \{1,2,\ldots,n\}.$

When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange**)**

$$
A \to A_1 \to A_2 \dots \to U \qquad \text{Using upper triangular.}
$$

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1. Then A is invertible iff all diagonal entries of U are nonzero;

When is A Invertible?

Question 1: When is A invertible?

Gaussian elimination (GE) (forward part, allow row exchange**)**

$$
A \to A_1 \to A_2 \dots \to U \qquad \text{Using upper triangular.}
$$

Theorem 2: Suppose PA = LU is the decomposition given in Thm 1. Then A is invertible iff all diagonal entries of U are nonzero;

Recall: Non-zero diagonal entries of U are the pivots (of A).

Answer 1: A is invertible iff A has n pivots (assuming A is n by n matrix). See also Sec 2.5 of Strang's book;

2nd bullet in the beginning of Sec 2.5.

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary: Detailed summary: We study the test conditions and computation of inverse. **1. Test conditions** -Algorithm test: n piyots $\frac{1}{2}$ Equation test; $Ax = D$ has a unique solution -can be written as product of elementary matrices. 2. **Expressions and computation of inverse** $-$ Expression $A^{-1} = E_p...E_2E_1$. (10.1) —Algorithm 1: Use (10.1). $-$ Algorithm 2: apply GE to [A, l] to get [I, A^{-1}] **3. Time complexity** $-\sqrt{2}$ and multa $\sqrt{2}$ \times $\sqrt{5}$ $\sqrt{5}$ —Matrix-vector multiplic⁴tion: *O*(*n*² ry Today (of Instructor)

nce summary:

{ test conditions and computation of inverse

Immary: **ne sentence sum**

e study the test cond

e stailed summary:

Test conditions

Algorithm test: Ax = Dhas

Equation test: Ax = Dhas est cond
 mary:

s

Ax = **p**has \Rightarrow not easy. **Summary Today (of Instructors)**

One sentence summary:

We study the <u>test conditions</u> and compressed

Detailed summary:

1. Test conditions
 $\frac{1}{\sqrt{2}}$ (Test conditions
 $\frac{1}{\sqrt{2}}$ (Test conditions)
 $\frac{1}{\sqrt{2}}$ (T **Summary Today (of Instruction Commary:**

The sentence summary:

Stailed summary:

Test conditions

The conditions

The conditions

The condition test: Ax = **D** has a unique solution

The written as product of elementary n nditions and compute

ts

has a unique solution

duct of elementary matrices
 autation of inverse), not easy of the piyots)
 $\frac{1}{2}$
 $\frac{1}{2}$ of the phase a unique solution

as product of elementary matrices

and computation of inverse
 $\frac{1}{2}$
 A^{-1} **IMARY:**

Second and Computation
 $\overrightarrow{Ax = Dhas}$ a unique solution

as product of elementary matrices

ad computation of inverse
 $x^1 = E_p...E_2E_1$.
 $\overrightarrow{1} = E_p...E_2E_1$.
 $\overrightarrow{1} = \frac{1}{2}E_p...E_2E_1$.
 $\overrightarrow{1} = \frac{1}{2}E_p...E_2E_1$.

 $M\dot{v}$ -tem $J\dot{v}$ (6:30-18:30)

Hw3 released soon

Obeck-M