Lecture 11

Structure of Solution Set I: RREF and Linear Space

Instructor: Ruoyu Sun

Today … Linear Space and Solution Set

- 1. Motivation: Solution set of rectangular system
- 2. Linear space
- 3. Null space and column space

Strang's book: Sec 3.1, 3.2

After this lecture, you should be able to

- 1. Verify linear space
- 2. Tell a few common linear spaces
- 3. Explain why the solution set of Ax=0 is a linear space
- 4. Write the column space of a matrix

Part 0 Review and Future Roadmap

Theorem 11.1 (Equivalent Conditions for Invertibility)

Let $A \in \mathbb{R}^{n \times n}$.

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system $A x = 0$ has a unique solution $x = 0$
- 3. A is a product of elementary matrices
- 4. After GJE of A, the final form is I_n
- 5. More …

We have proved the equivalence of 1,2,3,4.

Part I Solving Rectangular System

Example of Rectangular System

Example 1:

$$
\begin{cases}\nx_1 + x_2 - x_3 = 6 \\
2x_1 + 4x_2 + 2x_3 = 20.\n\end{cases}
$$

Equation View

Matrix View

$$
\begin{bmatrix} 1 & 1 & -1 & | & 6 \\ 2 & 4 & 2 & | & 20 \end{bmatrix}
$$

The process seems quite similar to solving a square system (breakdown case)

Any relation between solving these two types of systems?

Transform Rectangular System to Square System (1): Wide Coefficient Matrix

Claim: If you can solve all square systems, then you can solve all rectangular linear systems.

Example 1 (revisited):

Trick: Add ____________________________, obtain:

Equation View **Matrix View** Matrix View

Transform Rectangular System to Square System (2): Tall Coefficient Matrix

Claim: If you can solve all square systems, then you can solve all rectangular linear systems.

Example 2:

$$
\begin{cases}\nx_1 + x_2 = 6 \\
2x_1 + 4x_2 = 20 \\
x_1 + 2x_2 = 10\n\end{cases}
$$

$$
\begin{bmatrix} 1 & 1 & -1 & | & 6 \\ 2 & 4 & 2 & | & 20 \end{bmatrix}
$$

Equation View Matrix View

Example of Rectangular System

Example 1: RREF is

$$
\begin{cases} x_1 + x_2 = 12 \\ 2x_1 + 4x_2 = 38. \end{cases} \begin{bmatrix} \boxed{1} & 0 & 3 & -2 & 0 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & \boxed{1} \end{bmatrix}
$$

The equivalent system is

$$
x_1 + 3x_3 - 2x_4 = 0,
$$

$$
x_2 + x_3 - 3x_4 = 0,
$$

$$
0 = 1.
$$

Rectangular Case 1: No Solution

Example 1: RREF is

$$
\left[\begin{array}{c|cc} \boxed{1} & 0 & 3 & -2 & 0 \\ \hline 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & \boxed{1} \end{array}\right]
$$

The equivalent system is

$$
x_1 + 3x_3 - 2x_4 = 0,
$$

$$
x_2 + x_3 - 3x_4 = 0,
$$

$$
0 = 1.
$$

Rectangular Case 2: Infinitely many solutions

Example 2: RREF is

$$
\left[\begin{array}{c|c} \boxed{1} & 0 & 1 & 3 \\ \hline 0 & \boxed{1} & -1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]
$$

Equivalent linear system:

$$
x_1 + x_3 = 3,
$$

$$
x_2 - x_3 = 2.
$$

Equivalent to:

$$
x_1 = 3 - x_3,
$$

$$
x_2 = 2 + x_3.
$$

$$
S = \left\{ \left[\begin{array}{c} 3-t \\ 2+t \\ t \end{array} \right] \, \bigg| t \in \mathcal{R} \right\}
$$

Rectangular Case 2: Infinitely many solutions

Example 3

\n
$$
\begin{bmatrix}\n\boxed{1} & 1 & 0 & 0 & 0 & 3 \\
0 & 0 & \boxed{1} & 1 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 2 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$

The final the equivalent linear system is:

$$
x_1 + x_2 = 3,x_3 + x_4 = -4,x_5 = 2,0 = 0.
$$

We see that $x_3 + x_4 = -4$ does not uniquely determine the value of x_3, x_4 , and $x_1 + x_2 = 3$ does not uniquely determine the value of x_1, x_2, x_4 .

$$
x_1 = 3 - x_2,
$$

\n
$$
x_3 = -4 - x_4,
$$

\n
$$
x_5 = 2
$$

Rectangular Case 2: Infinitely many solutions

Example 3
$$
\begin{bmatrix} 1 & 0 & 0 & -1 & 4 & |5 \\ 0 & 1 & 0 & 3 & 1 & |2 \\ 0 & 0 & 1 & 2 & 2 & |1 \\ 0 & 0 & 0 & 0 & 0 & |0 \end{bmatrix}
$$

Equivalent linear system:

$$
\begin{cases}\nx_1 - x_4 + 4x_5 = 5, \\
x_2 + 3x_4 + x_5 = 2, \\
x_3 + 2x_4 + 2x_5 = 1,\n\end{cases}\n\Longrightarrow\n\begin{cases}\nx_1 = x_4 - 4x_5 + 5, \\
x_2 = -3x_4 - x_5 + 2, \\
x_3 = -2x_4 - 2x_5 + 1, \\
0 = 0.\n\end{cases}
$$

What's special about the solution set?

Recall: Cannot have 2 solutions; must be 0, 1 or infinity.

More to say about the solution set?

2D:

3D:

Solution of Systems?

Known known (After Lec 10): Do I know how to solve all "good" square linear systems?

Yes.

Unknown ?? (After Lec 10): Do I know how to solve all rectangular linear systems?

?

I don't know whether I know or not.

Theory guarantees.
 Q1: Have we enumerated all cases?

Q2: What is a proper way of expressing the solution set?

Need theory!

Part II Linear Space

—Linear space —Subspace

Definition 11.1 (Linear space)

Suppose V is a set associated with two operations: (i) Addition "+": $\mathbf{u} + \mathbf{v} \in V$, $\forall \mathbf{u} \in V$, $\mathbf{v} \in V$. (ii) Scalar multiplication: $\alpha \mathbf{u} \in V$, $\forall \alpha \in \mathbb{R}, \mathbf{u} \in V$.

V is called a linear space over ℝ if the 8
(A1) $u + v = v + u, \forall u, v \in V$.

$$
(A2) \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{w}, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V.
$$

(A3) There exists a element **0** s.t.
$$
\mathbf{u} + \mathbf{0} = \mathbf{u}
$$
, $\forall \mathbf{u} \in V$.

(A4) If
$$
\mathbf{u} \in V
$$
, then there exists $-\mathbf{u} = (-1)\mathbf{u}$, s.t. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

$$
(A5) \alpha(\mathbf{u}+\mathbf{v})=\alpha\mathbf{u}+\alpha\mathbf{v}, \forall \alpha\in\mathbb{R}, \mathbf{u}, \mathbf{v}\in V.
$$

$$
(A6) (\alpha + \beta)u = \alpha u + \beta u, \forall \alpha, \beta \in \mathbb{R}, u \in V.
$$

$$
(A7) \alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}, \forall \alpha, \beta \in \mathbb{R}, \mathbf{u} \in V.
$$

 $(A8)$ 1**u** = **u**.

Remark: Linear space is also called "vector space" (in textbook as well); we will use linear space more often. First time in your study: Define a subject by "structure"!

Linear Space

Informally:

Linear space is a set:

i) that is equipped with addition and scalar multiplication;

ii) any linear combination of elements is in this space.

category Set + operation Linear combination + property Closure under linear combination

Example: Euclidean space 欧⽒空间

Eg 1: \mathbb{R}^n is a linear space, called *n*-dimensional Euclidean space.

Remark: Don't take it for granted! It can be verified by definition that \mathbb{R}^n is a linear space.

Verification:

—Vector addition, scalar multiplication satisfy the required axioms of linear space.

—Any linear combination of vectors is also a vector.

—Existence of zero element, inverse of addition, unit element: $0 + u = u$; $u + (-u) = 0$; 1 $u = u$.

What operation is NOT needed for verification?

Example: Euclidean space 欧⽒空间

Geometrical interpretation:

 $n = 1$: R^1 is a line. Each element corresponds to a point on the line.

 $n = 2$: R^2 is a plane. Each element corresponds to a point on the plane.

 $n=3:~R^3$ is a 3-dimensional space. Each element corresponds to a point in the space.

Remark: The name "space" comes from the geometrical term "space" (e.g. lines forms plane; planes form space); But can be more than 3D.

Example: matrix space

Eg 2: $\mathbb{R}^{m \times n}$ is a linear space, called a matrix space.

Remark: Don't take it for granted! It can be verified by definition.

Verification:

—Matrix addition, scalar multiplication satisfy the required axioms of linear space.

—Any linear combination of matrices is also a matrix of the same dimension.

—Existence of zero element, inverse of addition, unit element: $0 + A = A$; $A + (-A) = 0$; $1 \cdot A = A$.

What operation is NOT needed for verification?

Example: polynomial space

Eg 3: Set of polynomials with degree no more than *k* is a linear space.

Verification:

Non-Examples

In the following, assume the set is equipped with regular addition and scalar multiplication of real numbers.

NonEg 1: $\{0,1,2,3,4,...\}$ is not a linear space. Why?

NonEg 2: Set of non-negative real numbers \mathbb{R}_+ is not a linear space. Why?

Exercise

In the following, assume the set is equipped with standard addition and scalar multiplication.

Are the following linear spaces?

1) Set of $n \times n$ upper triangular matrices.

2) Set of $n \times n$ elementary matrices.

3) $\mathbb{R}^1 \cup \mathbb{R}^2$.

4) {[1,2], [3,4], [0,0]}

4) { $x \in \mathbb{R}^2 : x_1 = 1$ }.

```
5) \{x \in \mathbb{R}^2 : x_2 = 2x_1\}.{x \in \mathbb{R}^2 : x_2 = 2x_1}
```
Easier Way to Tell a Linear Space?

Is there an easier way to verify a linear space?

Key property: closed under linear combination

Subspace

Definition 11.2 (subspace)

Suppose V is a linear space.

We say W is a subspace of V if two conditions hold:

- i) W is a subset of V ;
- ii) is a linear space. *W*

In words: A subspace of V is a subset that is itself a linear space.

Proposition 11.1 (criteria of subspace)

Suppose V is a linear space. W is a subspace of V if:

- i) W is a subset of V ;
- ii) W contains the zero element: $0 \in W$; the real number 0. NOT necessarily
- iii) Wis closed under addition: $\mathbf{u} + \mathbf{v} \in W$, \forall $\mathbf{u}, \mathbf{v} \in W$.
- iv) Wis closed under scalar multiplication: $\alpha \mathbf{u} \in W$, $\forall \mathbf{u} \in W$, $\alpha \in \mathbb{R}$.

In words: A subspace of V is a subset that is closed under linear combination.

Subspace Example 1

Eg 4a (biggest subspace) V is a subspace of V.

Eg 4b $\{0\}$ is a subspace of \mathbb{R}^n .

Verification:

Subspace Examples

Eg 5a $\{x \in \mathbb{R}^2 : x_2 = 2x_1\}$ is a subspace of \mathbb{R}^2 .

Eg 5b
$$
{x \in \mathbb{R}^2 : 3x_1 + 5x_2 = 0}
$$
 is a subspace of \mathbb{R}^2 .

Geometry: a line in the plane.

Eg 5c
$$
\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}
$$
 is a subspace of \mathbb{R}^3 . **Eg 5d** $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 . Geometry: a **________** in 3D space.

An Important Subspace

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 .

Non-Eg 2 $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 5\}$ is NOT a subspace of \mathbb{R}^3 .

Definition (homogeneous linear equation) $a_1x_1 + ... + a_nx_n = 0$ is a homogeneous linear equation.

Remark: $a_1x_1 + ... + a_nx_n = b$ where $b \neq 0$ is NOT.

Fact:
$$
\{x \in \mathbb{R}^n | \sum_{i=1}^n a_i x_i = 0\}
$$
 is a linear space;
 $\{x \in \mathbb{R}^n | \sum_{i=1}^n a_i x_i = b\}$ where $b \neq 0$ is not a linear space.

Part III Null Space and Column Space

—Null space, or Solution space of $Ax = 0$ —Span and column space

Taking intersection?

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 . **Eg 5d** $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 . Revisit the examples.

What about the intersection of the two subspaces?

Taking intersection?

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 . **Eg 5d** $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 . Revisit the examples.

What about the intersection of the two subspaces? Expressed as $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0, 3x_1 - x_3 = 0\}$

Answer: Still a subspace.

Intuitively, the intersection of two planes is a line.

Homogeneous Linear System

Definition 11.2 (homogeneous linear system)

A homogeneous linear system is where $A \in \mathbb{R}^{m \times n}$ are given and $x \in \mathbb{R}^{n \times 1}$ is the variable $Ax = 0$

In words: a homogeneous linear system is a linear system with RHS being **0**.

Homogeneous Linear System

Definition 11.2 (homogeneous linear system)

A homogeneous linear system is where $A \in \mathbb{R}^{m \times n}$ are given and $x \in \mathbb{R}^{n \times 1}$ is the variable $Ax = 0$

In words: a homogeneous linear system is a linear system with RHS being **0**.

Theorem 11.1 The solution set of a homogeneous linear system Ax=0 is a linear space.

Remark: Also a subspace of \mathbb{R}^n .

Definition 11.3 (**null space**)

The solution set of Ax=0 is called the null space of A, denoted as N(A).

Proof

Proof of Thm 11.1: Denote the solution set as W .

Need to verify: $(P1) 0 \in W$. (P2) W is closed under linear combination.

Two Ways to Generate Subspaces

Solution set of linear equation + Taking **intersection** ==> null space

Next, we show another important mechanism of generating a subspace: span (linear combination).

Definition: Span

Definition 11.3 (span)

Suppose V is a linear space. Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V. The span of $\mathcal U$ is defined as $\text{span}(\mathcal{U}) \triangleq \{a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k \mid a_1, \ldots, a_k \in \mathbb{R}\},$

In words: **the span (of elements of a linear space)** is the set of all linear combinations of these elements

Eg: $W = \{ s\mathbf{u} + t\mathbf{v} \mid s, t \in \mathbb{R} \}$ is the span of $\{ \mathbf{u}, \mathbf{v} \}$. **Remark**: For simplicity, we can also say W is the span of **u**, **v** .

Definition: Spanning Set

Definition 11.4 (spanning set)

Suppose V is a linear space. Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V. If span (\mathcal{U}) = V, then we say $\mathcal U$ is a spanning set of V, or $\mathcal U$ spans V.

Eg: $\{e_1, e_2, ..., e_n\}$ is a spanning set of \mathbb{R}^n .

Eg: $\{u, v\}$ is a spanning set of $W = \{su + tv \mid s, t \in \mathbb{R}\}.$

Exercise: Find a spanning set of the matrix space.

Remark: Spanning set is NOT unique. Cannot say "the spanning set".

Definition: Column Space

Definition 11.3 (column space)

Suppose $A = [\mathbf{a}_1, ..., \mathbf{a}_n] \in \mathbb{R}^{m \times n}$. is a linear space. Then $\text{span}(\{\mathbf{a}_1, ..., \mathbf{a}_n\})$ is called the column space of A, denoted as C(A).

In words: **A's column space is the span of A's column vectors**.

Eg:
$$
C(I_n) =
$$
 $\boxed{1 \ 0}$ $\boxed{1}$ $\boxed{1}$ $\boxed{0}$

Eg: Column space of
$$
A = \begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix}
$$
 is the set $\begin{Bmatrix} \alpha_1 \\ \alpha_2 \end{Bmatrix} + \alpha_2 \begin{bmatrix} 3 \\ 3 \end{bmatrix} | \alpha_1, \alpha_2 \in \mathbb{R} \end{Bmatrix}$.

Have you seen this before?

Column Space and Linear System

Eg: Column space of
$$
A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}
$$
 is the set $\begin{Bmatrix} 1 \\ \alpha_1 \end{Bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix} | \alpha_1, \alpha_2 \in \mathbb{R} \end{Bmatrix}$,
or set $\begin{Bmatrix} \begin{bmatrix} \alpha_1 \\ 4\alpha_1 + 3\alpha_2 \\ 2\alpha_1 + 3\alpha_2 \end{bmatrix} | \alpha_1, \alpha_2 \in \mathbb{R} \end{Bmatrix}$, or set $\{A\alpha \mid \alpha \in \mathbb{R}^2\}$.

Matrix form:

 $\mathbf{b} \in C(A) \Longleftrightarrow \exists \alpha_1, \alpha_2, \text{ s.t. } A\alpha = \mathbf{b} \iff A\mathbf{x} = \mathbf{b}$ has at least one solution **x**

Scalar form:

$$
\mathbf{b} \in C(A) \Longleftrightarrow \exists \alpha_1, \alpha_2, \text{ s.t. } \begin{bmatrix} \alpha_1 \\ 4\alpha_1 + 3\alpha_2 \\ 2\alpha_1 + 3\alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \iff \begin{cases} \alpha_1 = b_1 \\ 4\alpha_1 + 3\alpha_2 = b_2 \\ 2\alpha_1 + 3\alpha_2 = b_3 \end{cases}
$$
 has at least one solution (α_1, α_2) .

Column form:

 $\mathbf{b} \in C(A) \Longleftrightarrow \exists \alpha_1, \alpha_2$, s.t. $\qquad \Longleftrightarrow \qquad$ has at least one solution **x**

Column space and solvability

Proposition 11.1 Ax=b has a solution iff $b \in C(A)$.

The first result in this class about **solvability** of linear system. —more will come later.

It a direct outcome of definition:

 $-b= A x$ means b is a linear combination of columns of A with coefficients $x_1, x_2, ..., x_n$.

—"Solvable" means such a linear combination exists.

—Now we consider set of all linear combinations of columns.

—Thus "solvable" iff b is in this set.

Perspective of looking at "space" ("all possible"; global view).

Q1: "What" is the solution set of A**x**=**b**?

Partial answer: When **b** =0, it is a linear space N(A). **For general** b**?**

Q2: How to express/compute the solution set?

Concluding Part

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

We study linear space, including null space, column space, span.

Detailed summary:

1. Linear Space

- —Set + add, scalar multiply + closed under linear combination + 0,1, negative element
- —Euclidean space
- —Matrix space; polynomial space

2. **Subspace and span**

- **—**Subspace: subset that is closed under linear combination
- \leftarrow Span: set of linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

3. Null space and column space

- $-$ Null space N(A) is solution set of $Ax = 0$
- —Column space C(A) consists of linear combinations of columns
- $-Ax = b$ solvable iff b in $C(A)$