Lecture 11

Structure of Solution Set I: **RREF and Linear Space**

Instructor: Ruoyu Sun

Today ... Linear Space and Solution Set

- 1. Motivation: Solution set of rectangular system
- 2. Linear space
- 3. Null space and column space

Strang's book: Sec 3.1, 3.2

After this lecture, you should be able to

- 1. Verify linear space
- 2. Tell a few common linear spaces
- 3. Explain why the solution set of Ax=0 is a linear space
- 4. Write the column space of a matrix

Part 0 Review and Future Roadmap Theorem 11.1 (Equivalent Conditions for Invertibility)

Let $A \in \mathbb{R}^{n \times n}$.

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system $A\mathbf{x} = 0$ has a unique solution $\mathbf{x} = \mathbf{0}$
- 3. A is a product of elementary matrices
- 4. After GJE of A, the final form is I_n
- 5. More ...

We have proved the equivalence of 1,2,3,4.

Part I Solving Rectangular System

Example of Rectangular System

Example 1:

$$\begin{cases} x_1 + x_2 - x_3 = 6\\ 2x_1 + 4x_2 + 2x_3 = 20. \end{cases}$$

Equation View

Matrix View

$$\begin{bmatrix} 1 & 1 & -1 & | & 6 \\ 2 & 4 & 2 & | & 20 \end{bmatrix}$$

The process seems quite similar to solving a square system (breakdown case)

Any relation between solving these two types of systems?

Transform Rectangular System to Square System (1): Wide Coefficient Matrix

Claim: If you can solve all square systems, then you can solve all rectangular linear systems.

Example 1 (revisited):

J	$x_1 + x_2 - x_3 = 6$	[1	1	-1	6]	
	$2x_1 + 4x_2 + 2x_3 = 20.$	2	4	2	20	

Trick: Add _____, obtain:

Equation View

 $x_1 + x_2 - x_3 = 6$ $2x_1 + 4x_2 + 2x_3 = 20$ $0x_1 + 0x_2 + 0x_3 = 0.$ Matrix View

Transform Rectangular System to Square System (2): Tall Coefficient Matrix

Claim: If you can solve all square systems, then you can solve all rectangular linear systems.

Example 2:

$$\begin{cases} x_1 + x_2 = 6\\ 2x_1 + 4x_2 = 20\\ x_1 + 2x_2 = 10 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & -1 & 6 \\ 2 & 4 & 2 & 20 \end{bmatrix}$$

Equation View

 $\begin{cases} x_1 + x_2 - x_3 = 6 \\ 2x_1 + 4x_2 + 2x_3 = 20 \\ 0x_1 + 0x_2 + 0x_3 = 0. \end{cases}$

 Matrix View

 1
 -1
 6

 2
 4
 2
 20

 0
 0
 0
 0

Example of Rectangular System

Example 1: RREF is

$$\begin{cases} x_1 + x_2 = 12 \\ 2x_1 + 4x_2 = 38. \end{cases} \begin{bmatrix} 1 & 0 & 3 & -2 & 0 \\ 0 & 1 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The equivalent system is

$$x_1 + 3x_3 - 2x_4 = 0,$$

 $x_2 + x_3 - 3x_4 = 0,$
 $0 = 1.$

Rectangular Case 1: No Solution

Example 1: RREF is

$$\begin{bmatrix} 1 & 0 & 3 & -2 & 0 \\ 0 & 1 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The equivalent system is

$$x_1 + 3x_3 - 2x_4 = 0,$$

$$x_2 + x_3 - 3x_4 = 0,$$

$$0 = 1.$$

Rectangular Case 2: Infinitely many solutions

Example 2: RREF is

$$\left[\begin{array}{cc|c}1&0&1&3\\0&1&-1&2\\0&0&0&0\end{array}\right]$$

Equivalent linear system:

$$x_1 + x_3 = 3,$$

 $x_2 - x_3 = 2.$

Equivalent to:

$$x_1 = 3 - x_3,$$

 $x_2 = 2 + x_3.$

$$S = \left\{ \left[egin{array}{c} 3-t \ 2+t \ t \end{array}
ight| t \in \mathcal{R}
ight\}$$

Rectangular Case 2: Infinitely many solutions

Example 3
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The final the equivalent linear system is:

$$x_1 + x_2 = 3,$$

 $x_3 + x_4 = -4,$
 $x_5 = 2,$
 $0 = 0.$

We see that $x_3 + x_4 = -4$ does not uniquely determine the value of x_3, x_4 , and $x_1 + x_2 = 3$ does not uniquely determine the value of x_1, x_2, x_4 .

$$egin{aligned} x_1 &= 3 - x_2, \ x_3 &= -4 - x_4, \ x_5 &= 2 \end{aligned}$$

Rectangular Case 2: Infinitely many solutions

Example 3
$$\begin{bmatrix} 1 & 0 & 0 & -1 & 4 & | & 5 \\ 0 & 1 & 0 & 3 & 1 & | & 2 \\ 0 & 0 & 1 & 2 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Equivalent linear system:

$$\begin{cases} x_1 - x_4 + 4x_5 = 5, \\ x_2 + 3x_4 + x_5 = 2, \\ x_3 + 2x_4 + 2x_5 = 1, \\ 0 = 0. \end{cases} \implies \begin{cases} x_1 = x_4 - 4x_5 + 5, \\ x_2 = -3x_4 - x_5 + 2, \\ x_3 = -2x_4 - 2x_5 + 1, \\ 0 = 0. \end{cases}$$

What's special about the solution set?

Recall: Cannot have 2 solutions; must be 0, 1 or infinity.

More to say about the solution set?

2D:

3D:

Solution of Systems?

Known known (After Lec 10): Do I know how to solve all "good" square linear systems?

Yes.

Theory guarantees.

Unknown ?? (After Lec 10): Do I know how to solve all rectangular linear systems?

?

I don't know whether I know or not.

Q1: Have we enumerated all cases?

Q2: What is a proper way of expressing the solution set?

Need theory!

Part II Linear Space

—Linear space—Subspace

Definition 11.1 (Linear space)

Suppose V is a set associated with two operations: (i) Addition "+": $\mathbf{u} + \mathbf{v} \in V, \forall \mathbf{u} \in V, \mathbf{v} \in V$. (ii) Scalar multiplication: $\alpha \mathbf{u} \in V, \forall \alpha \in \mathbb{R}, \mathbf{u} \in V$.

V is called a linear space over \mathbb{R} if the 8 (A1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \forall \mathbf{u}, \mathbf{v} \in V$.

(A2)
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{w}, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V.$$

(A3) There exists a element $\mathbf{0}$ s.t. $\mathbf{u} + \mathbf{0} = \mathbf{u}, \forall \mathbf{u} \in V$.

(A4) If
$$\mathbf{u} \in V$$
, then there exists $-\mathbf{u} = (-1)\mathbf{u}$, s.t. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

(A5)
$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}, \forall \alpha \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in V.$$

(A6)
$$(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}, \forall \alpha, \beta \in \mathbb{R}, \mathbf{u} \in V.$$

(A7)
$$\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}, \forall \alpha, \beta \in \mathbb{R}, \mathbf{u} \in V.$$

(A8) 1u = u.

Remark: Linear space is also called "vector space" (in textbook as well); we will use linear space more often.

First time in your study: Define a subject by "structure"!

Linear Space

Informally:

Linear space is a set:

i) that is equipped with addition and scalar multiplication;

ii) any linear combination of elements is in this space.

category Set + operation Linear combination + property Closure under linear combination

Example: Euclidean space 欧氏空间

Eg 1: \mathbb{R}^n is a linear space, called *n*-dimensional Euclidean space.

Remark: Don't take it for granted! It can be verified by definition that \mathbb{R}^n is a linear space.

Verification:

-Vector addition, scalar multiplication satisfy the required axioms of linear space.

—Any linear combination of vectors is also a vector.

-Existence of zero element, inverse of addition, unit element: $0 + \mathbf{u} = \mathbf{u}; \mathbf{u} + (-\mathbf{u}) = 0; \quad 1\mathbf{u} = \mathbf{u}.$

What operation is NOT needed for verification?

Example: Euclidean space 欧氏空间

Geometrical interpretation:

n = 1: R^1 is a line. Each element corresponds to a point on the line.

n = 2: R^2 is a plane. Each element corresponds to a point on the plane.

n = 3: R^3 is a 3-dimensional space. Each element corresponds to a point in the space.

Remark: The name "space" comes from the geometrical term "space" (e.g. lines forms plane; planes form space); But can be more than 3D.

Example: matrix space

Eg 2: $\mathbb{R}^{m \times n}$ is a linear space, called a matrix space.

Remark: Don't take it for granted! It can be verified by definition.

Verification:

—Matrix addition, scalar multiplication satisfy the required axioms of linear space.

—Any linear combination of matrices is also a matrix of the same dimension.

-Existence of zero element, inverse of addition, unit element: 0 + A = A; A + (-A) = 0; $1 \cdot A = A$.

What operation is NOT needed for verification?

Example: polynomial space

Eg 3: Set of polynomials with degree no more than k is a linear space.

Verification:

Non-Examples

In the following, assume the set is equipped with regular addition and scalar multiplication of real numbers.

NonEg 1: $\{0,1,2,3,4,...\}$ is not a linear space. Why?

NonEg 2: Set of non-negative real numbers \mathbb{R}_+ is not a linear space.

Why?

Exercise

In the following, assume the set is equipped with standard addition and scalar multiplication.

Are the following linear spaces?

1) Set of $n \times n$ upper triangular matrices.

2) Set of $n \times n$ elementary matrices.

3) $\mathbb{R}^1 \cup \mathbb{R}^2$.

4) {[1,2], [3,4], [0,0]}

4) $\{x \in \mathbb{R}^2 : x_1 = 1\}$.

```
5){x \in \mathbb{R}^2 : x_2 = 2x_1}.
```

Easier Way to Tell a Linear Space?

Is there an easier way to verify a linear space?

Key property: closed under linear combination

Subspace

Definition 11.2 (subspace)

Suppose V is a linear space.

We say W is a subspace of V if two conditions hold:

- i) W is a subset of V;
- ii) W is a linear space.

In words: A subspace of V is a subset that is itself a linear space.

Proposition 11.1 (criteria of subspace)

Suppose V is a linear space. W is a subspace of V if:

- i) W is a subset of V;
- ii) W contains the zero element: $0 \in W$; NOT necessarily the real number 0.
- iii) W is closed under addition: $\mathbf{u} + \mathbf{v} \in W, \forall \mathbf{u}, \mathbf{v} \in W$.
- iv) W is closed under scalar multiplication: $\alpha \mathbf{u} \in W, \forall \mathbf{u} \in W, \alpha \in \mathbb{R}$.

In words: A subspace of V is a subset that is closed under linear combination.

Subspace Example 1

Eg 4a (biggest subspace) V is a subspace of V.

Eg 4b $\{0\}$ is a subspace of \mathbb{R}^n .

Verification:

Subspace Examples

Eg 5a $\{x \in \mathbb{R}^2 : x_2 = 2x_1\}$ is a subspace of \mathbb{R}^2 .

Eg 5b
$$\{x \in \mathbb{R}^2 : 3x_1 + 5x_2 = 0\}$$
 is a subspace of \mathbb{R}^2 .

Geometry: a line in the plane.

Eg 5c
$$\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$$
 is a subspace of \mathbb{R}^3 .
Eg 5d $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 .
Geometry: a ______ in 3D space.

An Important Subspace

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 .

Non-Eg 2 { $x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 5$ } is NOT a subspace of \mathbb{R}^3 .

Definition (homogeneous linear equation) $a_1x_1 + \ldots + a_nx_n = 0$ is a homogeneous linear equation.

Remark: $a_1x_1 + \ldots + a_nx_n = b$ where $b \neq 0$ is NOT.

Fact:
$$\{x \in \mathbb{R}^n \mid \sum_{i=1}^n a_i x_i = 0\}$$
 is a linear space;
 $\{x \in \mathbb{R}^n \mid \sum_{i=1}^n a_i x_i = b\}$ where $b \neq 0$ is not a linear space.

Part III Null Space and Column Space

—Null space, or Solution space of Ax = 0—Span and column space

Taking intersection?

Revisit the examples.

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 .

Eg 5d $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 .

What about the intersection of the two subspaces?

Taking intersection?

Revisit the examples.

Eg 5c $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0\}$ is a subspace of \mathbb{R}^3 .

Eg 5d $\{x \in \mathbb{R}^3 : 3x_1 = x_3\}$ is a subspace of \mathbb{R}^3 .

What about the intersection of the two subspaces? Expressed as $\{x \in \mathbb{R}^3 : 3x_1 + 5x_2 + x_3 = 0, 3x_1 - x_3 = 0\}$

Answer: Still a subspace.

Intuitively, the intersection of two planes is a line.

Homogeneous Linear System

Definition 11.2 (homogeneous linear system)

A homogeneous linear system is Ax=0 where $A\in \mathbb{R}^{m\times n}$ are given and $x\in \mathbb{R}^{n\times 1}$ is the variable

In words: a homogeneous linear system is a linear system with RHS being **0**.

Homogeneous Linear System

Definition 11.2 (homogeneous linear system)

A homogeneous linear system is Ax=0 where $A\in \mathbb{R}^{m\times n}$ are given and $x\in \mathbb{R}^{n\times 1}$ is the variable

In words: a homogeneous linear system is a linear system with RHS being **0**.

Theorem 11.1 The solution set of a homogeneous linear system Ax=0 is a linear space.

Remark: Also a subspace of \mathbb{R}^n .

Definition 11.3 (null space)

The solution set of Ax=0 is called the null space of A, denoted as N(A).

Proof

Proof of Thm 11.1: Denote the solution set as W.

Need to verify: (P1) $0 \in W$. (P2) W is closed under linear combination.

Two Ways to Generate Subspaces

Solution set of linear equation + Taking **intersection** ==> null space

Next, we show another important mechanism of generating a subspace: span (linear combination).

Definition: Span

Definition 11.3 (span)

Suppose V is a linear space. Suppose $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is a subset of V. The span of \mathcal{U} is defined as $\operatorname{span}(\mathcal{U}) \triangleq \{a_1\mathbf{u}_1 + ... + a_k\mathbf{u}_k \mid a_1, ..., a_k \in \mathbb{R}\}),$

In words: the span (of elements of a linear space) is the set of all linear combinations of these elements

Eg: $W = \{su + tv \mid s, t \in \mathbb{R}\}$ is the span of $\{u, v\}$. **Remark**: For simplicity, we can also say W is the span of u, v.

Definition: Spanning Set

Definition 11.4 (spanning set)

Suppose V is a linear space. Suppose $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is a subset of V. If $\operatorname{span}(\mathcal{U}) = V$, then we say \mathcal{U} is a spanning set of V, or \mathcal{U} spans V.

Eg: $\{e_1, e_2, \dots, e_n\}$ is a spanning set of \mathbb{R}^n .

Eg: $\{\mathbf{u}, \mathbf{v}\}$ is a spanning set of $W = \{s\mathbf{u} + t\mathbf{v} \mid s, t \in \mathbb{R}\}$.

Exercise: Find a spanning set of the matrix space.

Remark: Spanning set is NOT unique. Cannot say "the spanning set".

Definition: Column Space

Definition 11.3 (column space)

Suppose $A = [\mathbf{a}_1, ..., \mathbf{a}_n] \in \mathbb{R}^{m \times n}$. is a linear space. Then span($\{\mathbf{a}_1, ..., \mathbf{a}_n\}$) is called the column space of A, denoted as C(A).

In words: A's column space is the span of A's column vectors.

Eg: C(
$$I_n$$
) = _____
Eg: Column space of $A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \end{bmatrix}$ is the set $\left\{ \alpha_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 3 \end{bmatrix} \mid \alpha_1, \alpha_2 \in \mathbb{R} \right\}$

Column space of $A = \begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix}$ is the set $\left\{ \begin{array}{c} \alpha_1 & 4 \\ 2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 3 \\ 3 \end{bmatrix} \mid \alpha_1, \alpha_2 \in \mathbb{R} \right\}$

Have you seen this before?

Column Space and Linear System

Eg: Column space of
$$A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}$$
 is the set $\left\{ \alpha_1 \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix} \mid \alpha_1, \alpha_2 \in \mathbb{R} \right\}$, or set $\left\{ \begin{bmatrix} \alpha_1 \\ 4\alpha_1 + 3\alpha_2 \\ 2\alpha_1 + 3\alpha_2 \end{bmatrix} \mid \alpha_1, \alpha_2 \in \mathbb{R} \right\}$, or set $\{A\alpha \mid \alpha \in \mathbb{R}^2\}$.

Matrix form:

 $\mathbf{b} \in C(A) \iff \exists \alpha_1, \alpha_2, \text{ s.t. } A \alpha = \mathbf{b} \iff A \mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{x}

Scalar form: $\begin{bmatrix} \alpha & 1 & \begin{bmatrix} k \end{bmatrix}$

$$\mathbf{b} \in C(A) \iff \exists \alpha_1, \alpha_2, \text{ s.t.} \begin{bmatrix} \alpha_1 \\ 4\alpha_1 + 3\alpha_2 \\ 2\alpha_1 + 3\alpha_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \iff \begin{cases} \alpha_1 = b_1 \\ 4\alpha_1 + 3\alpha_2 = b_2 \\ 2\alpha_1 + 3\alpha_2 = b_3 \end{cases} \text{ has at least one solution } (\alpha_1, \alpha_2).$$

Column form:

 $\mathbf{b} \in C(A) \iff \exists \alpha_1, \alpha_2, \text{ s.t.} \longrightarrow \Box$ has at least one solution \mathbf{x}

Column space and solvability

Proposition 11.1 Ax=b has a solution iff $b \in C(A)$.

The first result in this class about **solvability** of linear system. —more will come later.

It a direct outcome of definition:

—b= A x means b is a linear combination of columns of A with coefficients $x_1, x_2, ..., x_n$.

—Now we consider set of all linear combinations of columns.

-Thus "solvable" iff b is in this set.

Perspective of looking at "space" ("all possible"; global view).

Q1: "What" is the solution set of A**x**=**b**?

Partial answer: When b =0, it is a linear space N(A). For general b?

Q2: How to express/compute the solution set?

Concluding Part

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

We study linear space, including null space, column space, span.

Detailed summary:

1. Linear Space

- -Set + add, scalar multiply + closed under linear combination + 0,1, negative element
- -Euclidean space
- -Matrix space; polynomial space

2. Subspace and span

- -Subspace: subset that is closed under linear combination
- —Span: set of linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_n$.

3. Null space and column space

- -Null space N(A) is solution set of Ax = 0
- -Column space C(A) consists of linear combinations of columns
- -Ax = b solvable iff b in C(A)