Lecture 12

Linear Space II: Subspace, Span and Column Space

Instructor: Ruoyu Sun

Today's Lecture: Outline

Today ... Subspace, span and column space

1. Subspace

2. Span

3. Column space (the permit).

Strang's book: Sec 3.1

After this lecture, you should be able to

- 2. Compute the $\left($ span of a set); Explain why the span is a subspace or internal Coals

y's Lecture: Learning Goals

ture, you should be able to

near space by subspace

the span of a set; Explain why the span is a subspace

elation of the column space and linear system (the βε
- 3. Tell the relation of the column space and linear system (time permits)

Part I Linear Space (2)

—Linear space: More Examples **-Subspace**

Recall: Motivation and Informal Definition

Solution

What are special about lines, planes? What a
Compa
Climear spa **Informal Definition**

ut lines, planes?

s, ellipsoids, etc.)

combination

and scalar multiplication;

and scalar multiplication;

ents is in this space)

(Compared to circles, balls, ellipsoids, etc.)

Closed under linear combination Closed under lin

Closed under lin

mally:

r space is a set with respace is a set with respace is a set with respective of a

dinear combination of the combination of the combination of the contraction of the contraction

Informally:

Linear space is a set with rules for addition & scalar multiplication: Closed under line
 mally:
 ir space is a set with rule

andard properties of address

<u>y tinear combination of</u> tion & scalar m
scalar multiplice
s in this space

- Standard properties of addition and scalar multiplication;
- any linear combination of elements is in this space.

closed under LC .

Recall: Euclidean Space and Matrix Space

Eg 1: \mathbb{R}^n is a linear space, called *n*-dimensional Euclidean space.

Verify Informally: Euclidean space is a linear space, when equipped with addition and scalar-vector product

 $R^n = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \middle| \begin{matrix} \chi_i \in R, \forall i \\ \chi_i \in R, \forall i \end{matrix} \right\}$ check:
Eg 2: $\mathbb{R}^{m \times n}$ is a linear space, called a matrix space. Eg 2: $($

Verify Informally: Matrix space is a linear space, when equipped with addition and scalar-matrix product

$$
R^{mkn} \subset \left\{ \begin{bmatrix} a_{11} - a_{1n} \\ \vdots \\ a_{m1} - a_{mn} \end{bmatrix} \middle| \begin{matrix} a_{ij} \in R, \forall i \in \mathbb{R}, 1 \leq j \leq n \end{matrix} \right\}.
$$

Check: A. B. $\in \mathbb{R}^{mkn} \rightarrow \alpha A + \beta B \in \mathbb{R}^{mkn}.$

Example: polynomial space $(3rd$ typick $15)$.

Eg 3: Set of polynomials with degree no more than k "is" a linear space.

Verification:
$$
\log_{100}
$$
 and $\log_{100} x^2 + 2x$ **degree** = 2

\n
$$
f(x) = x - 7x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x - 7x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x - 7x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\nFigure 2.1. \n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} = 21
$$
\n
$$
f(x) = x^2 + x^{21} \qquad \text{degree} =
$$

Non-Example : Polynomial with Exact Degree
\n
$$
\hat{p}_n \triangleq \{ polymomials of degree = n \}
$$

\n \hat{p}_n 13. NOT a linear space.
\nC. $\hat{p}_2 \triangleq \{ ax^2 | a \in \mathbb{R}, a \neq b \}$
\n \Rightarrow Set
\n \Rightarrow open,
\n $ax^2 + bx^2 = (ax^2)^2$, Operation well-defined.
\n $\Rightarrow AC$:
\n \hat{p}_1 0+1) $x^2 \in \hat{p}_1$ 1 if $ax^2 + bx^2$
\nThus $2x^2 + (-2x^2) = 0 \cdot x^2 \neq \hat{p}_2$, not closed under LC.
\n \Rightarrow NOT a linear space.

Exercise (informal)

Assume the set is equipped with standard addition and scalar multiplication.

Are the following linear spaces? Verify by the *informal* definition.

Children Conseil [Remark:

Informal problems do not appear in hw & exam] Set of $n \times n$ upper triangular matrices. $\begin{bmatrix} \infty \\ \infty \end{bmatrix} = \begin{bmatrix} \infty \\ \infty \end{bmatrix} + \begin{bmatrix} \infty \\ \infty \end{bmatrix} = \begin{bmatrix} \infty \\ \infty \end{bmatrix}$
 \times 2) Set of $n \times n$ elementary matrices. $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 2 &$ $X_3 \mathbb{R}^1 \cup \mathbb{R}^2$. "+" [1] + $\binom{2}{3}$ = ? not elementory χ_4 ^N[1,2], [3,4], [0,0]} [1,2] + [3,4] = [4,6] $\oint M$ $\vec{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $3 \cdot \vec{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \in M$. So not closed while \bigvee 4) $\{x \in \mathbb{R}^2 : x_1 = 1\}$. $\sqrt{6}$ { $x \in \mathbb{R}^2$: $x_2 = 2x$ }. Verfy. $0 \int \vec{x} = \begin{bmatrix} \vec{t} \\ \vec{2t} \end{bmatrix} \in M$, $\alpha \cdot \vec{x} = \begin{bmatrix} \vec{t} \cdot \alpha \\ 2\vec{t} \cdot \alpha \end{bmatrix}$ $x \in M$.
 $\frac{1}{2} \int \vec{x} = \begin{bmatrix} \vec{t} \\ \vec{t} \end{bmatrix}$, $\vec{y} = \begin{bmatrix} \vec{t} \\ \vec{t} \end{bmatrix}$, $\vec{y} = \begin{bmatrix$

Linear space inside a linear space?

Linear space inside a linear space?

\n
$$
\{x \in \mathbb{R}^2 : x_2 = 2x_1\}.
$$
\nThey are $\lfloor x \rfloor$ $\lfloor x \$

 $subspacz$, $27e$ lat.

Linear space inside a linear space.

We call them $\frac{546.57}{100}$

Subspace: Definition and Verification

Definition 11.2 (subspace)

$$
Subspace=sub(\text{ret})+(lineev)space
$$

Suppose V is a linear space.

We say W is a subspace of V if two conditions hold:

- W is a subset of V : i)
- W is a linear space. ii

In words: A subspace of V is a subset that is itself a linear space.

Subspace: Definition and Verification

Definition 11.2 (subspace) $\frac{1}{2}$

Suppose V is a linear space.

We say W is a subspace of V if two conditions hold:

- i) W is a subset of V ;
- ii) W is a linear space.

In words: A subspace of V is a subset that is itself a linear space. We say W is a subspace of V if two conditions hold:

i) W is a subset of V;

ii) W is a linear space.

In words: A subspace of V is a subset that is itself a linear space
 Proposition 12.1 (criteria of subspace)

Suppos s itself a linear space

 $rac{1}{\frac{546501}{1}}$

ubset
O E W OCW

,

Proposition 11.1 (criteria of subspace)

Suppose V is a linear space. W is a subspace of V if:

- i) W is a subset of V ;
- ii) W contains the zero element: $\mathbf{0} \in W$; the real number 0. the real number 0.
- iii) W is closed under addition: $\mathbf{u} + \mathbf{v} \in W$, \forall $\mathbf{u}, \mathbf{v} \in W$.
- iv) Wis closed under scalar multiplication: $\alpha \mathbf{u} \in W$, $\forall \mathbf{u} \in W$, $\alpha \in \mathbb{R}$. $\frac{1}{10}$

Informally: A subspace of V is a subset that is closed under linear combination.

Remark: Easier Way to Verify Linear Space Ry goros Eas <u>ту</u>

Note: Verifying linear space formally is a bit long.

Verifying linear space informally is… informal

If you already have a linear space (often \mathbb{R}^n) and a subset, then checking linear space formally is easier.

Key property: closed under linear combination

Extra property: contains 0 element. mder linear co

Exercise((Formal)

In the following, assume the set is equipped with standard addition and scalar multiplication.

```
Are the following linear spaces? Verify formally.
   Set of n \times n upper triangular matrices.
                                                     Subset of R^n or R^{nx}.
2) Set of n \times n elementary matrices.
3) \mathbb{R}^1 \cup \mathbb{R}^2. not a subset
4) \{[1,2],[3,4],[0,0]\}4) \{x \in \mathbb{R}^2 : x_1 = 1\}.
f(x \in \mathbb{R}^2 : x_2 = 2x_1.
```

Problem	Prove	$ X \in \mathbb{R}^2 X_2 = 2x_1 \leq W$
13. a linear space.		
20.0000	20.0000	
3.0000	20.0000	
4.0000	20.0000	
5.0000	2.0000	
6.0000	2.0000	
7.0000	3.0000	

Verify. 0 If
$$
\vec{x} = [\frac{t}{2t}] \in M
$$
, $\alpha \cdot \vec{x} = [\frac{t \cdot \alpha}{2t \cdot \alpha}] \times \in M$.
\n
$$
\begin{array}{rcl}\n\text{Q} & \text{If } \vec{x} = [\frac{t}{2t}] \text{ If } \vec{y} = [\frac{s}{2s}] \text{ and } \vec{y} = [\frac{s+t}{2s+1}] \text{ and } \\
\text{Cov}(u, m) & \text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{Cov}(u, m) & \text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \text{ and } \\
\text{If } \vec{y} = [\frac{s}{2t}] \
$$

Subspace Examples

Eg 4a (biggest subspace) V is a subspace of V. amples

amples
 $\frac{1}{2}$ y is a subspace of V.

1

Eg 4b $\{0\}$ is a subspace of \mathbb{R}^n . Verification: Subspace Examples

Eg 4a (biggest subspace) V is a subspace of V.

Eg 4b {0} is a subspace of \mathbb{R}^n .

Verification:
 $\overrightarrow{v} \leftrightarrow \overrightarrow{v}$
 \overrightarrow{v} + 0. Set. D $\vec{0}$ \in $\{\vec{0}\}.$
 $D \propto \vec{n} = \vec{n}$ \in $\{\vec{n}\}$ $\begin{bmatrix} 0 & \text{Set} & \cup \\ \emptyset & \overrightarrow{0} & \notin \{[] \} \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\vec{D}+\vec{D}=\vec{0}$ \in $\{\vec{D}\}$.

 $\{\overline{v}\}\circ__\alpha$ subgr \vec{v} = \vec{o} . $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.$ bspace of V.
 $\{\vec{v}\}$ is \vec{v} to \vec{v} is \vec{v} of \vec{v} is \vec{v} of \vec{v} if \vec{v} is \vec{v} if \vec{v} is \vec{v} if \vec{v} $3\left(\begin{array}{c}1\\1\end{array}\right)+1\left(\begin{array}{c}1\\1\end{array}\right)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{$ NOT Lmear γ \sim .

Part II Span

 $\overline{-$ Sec. 3.1

Motivation: Expanding to Linear Space

Motivating Question:

How to expand a discrete set to a linear space?

Surely, the whole space that contains the set is a linear space. ng Question:
xpand a discrete set to a linear spa
extends that contains the set is

That's NOT interesting.

An **interesting** question is: **Remark: Identifying a good question**

Is extremely important! In many cases, the question is much more important than answer!

Motivating Question:

How to expand a discrete set to a linear space?

Surely, the whole space that contains the set is a linear space.

That's NOT interesting.

An **interesting** question is: **Remark**: Identifying a good question **What is the minimal linear space** In many cases, the question is much **What is the minimal linear space** that contains $\{V_1, \ldots, V_n\}$? Motivating Question:

How to expand a discrete set to

Surely, the whole space that cont

That's NOT interesting.

An **interesting** question is.

What is the minimal linear

Mat is the minimal linear An interesting question is

What is the minimal linear

hat contains { \mathbf{v}_1 , ..., \mathbf{v}_n } ing questi

Is extremely important! Trains the set is a linear space.

Network: Identifying a good question

Is extremely important!

Network: In many cases, the question is much

network: the question is much

Expanding One Element

Eg2: a set of two points $\{u, v\}$ is NOT a linear space.

Let's analyze what a minimal space V should contain.

Eg2: a set of two points $\{u, v\}$ is NOT a linear space.

Let's analyze what a minimal space V should contain.

First, α **u**, α **v** should be in V. V is at least

Is this enough?

Second, α **u** + β **v** should be in V. V is at least $M \triangleq \left\{ \alpha \vec{V} + \beta \vec{v} \mid \alpha, \beta \in \mathbb{R} \right\}$ Is this enough? i.e. Is M a linear space? \forall es. Yes. Check $\vec{x}.\vec{y} \in M \Rightarrow \vec{x}+\beta \vec{y} \in M$

Key Property: LCotLG is LC

 $M \triangleq {\alpha u + \beta v \choose \alpha, \beta \in \mathbb{R}}$

Check \overrightarrow{x} , $\overrightarrow{y} \in M \Rightarrow a\overrightarrow{x} + b\overrightarrow{y} \in M$, $\overrightarrow{y} = b$

i.e. $a(\overrightarrow{x}, \overrightarrow{u} + \beta, \overrightarrow{v}) + b(\overrightarrow{x}, \overrightarrow{u} + \beta, \overrightarrow{v}) \in M$
 $(a\overrightarrow{x} + b\overrightarrow{v})\overrightarrow{u} + (a\overrightarrow{p}, b\overrightarrow{p}, \overrightarrow{v})$

Key property $\overrightarrow{p} \cdot \overrightarrow{v} + g\overrightarrow{v}$

Linear combination o

Linear combination of two linear combinations of u, v is a linear combination of u.v.

$$
LC \text{ of } LC \text{ is } LC.
$$

transityve

Expanding Any Number of Elements

Eg3 $\left\{$ **u**₁, ..., **u**_n $\right\}$ is NOT a linear space. Let's analyze what a minimal space V should contain. $M \triangleq \left\{ \alpha, \overrightarrow{u_1} + \cdots + \alpha, \overrightarrow{u_n} \right\} \alpha, \varepsilon, \beta, \beta, \gamma \right\}$, should be in V. Is this enough? i.e. Is M a linear space? $\forall \ell$, Yes. Check \vec{x} , \vec{y} \in M \Rightarrow UT \leftrightarrow \vec{y} \in M or $\overrightarrow{X}+\overrightarrow{y}=\overrightarrow{M}$

Definition: Span

Definition 11.3 (span)

Suppose V is a linear space. Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V. The span of ${\mathscr U}$ is defined as $\text{span}(\mathcal{U}) \triangleq (a_1 \mathbf{u}_1 + \dots + a_k \mathbf{u}_k \mid a_1, \dots, a_k \in \mathbb{R})$ **In words**: **the span (of elements of a linear space)** is the set of near combinations of these elements **Definition 11.3 (span)**
Suppose V is a linear space.
Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$
The span of \mathcal{U} is defined as **ion:** Span
 pan)
 lear space.
 l₁, u₂, ..., **u**_k} is a subset of V.

defined as
 $\{a_1\mathbf{u}_1 + ... + a_k\mathbf{u}_k \mid a_1, ..., a_k \in \mathbb{R}\}$, $\}$ &
 span (of elements of a linear space) is

nations of these elements Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V.
The span of \mathcal{U} is defined as
span(\mathcal{U}) \triangleq $(a_1\mathbf{u}_1 + ... + a_k\mathbf{u}_k \mid a_1, ..., a_k \in \mathbb{R})$. Set
In words: the span (of elements of a linear space) is t In words: the span (of elements of a linear space) is the
affilinear combinations of these elements
Fact: The span of any finite subset of V is a subspace span(u) = { $a_1u_1 + ... + a_ku_k$ | $a_1, ..., a_k \in \mathbb{R}$

In words: the span (of elements of a linear s

Fact: The span of any finite subset of V is a

Eg: W={ s **u** + t **v** | s , $t \in \mathbb{R}$ } is the span of {**u**, **v**}

Remark:

Fact: The span of any finite subset of V is a subspace of V. composed in the

 $Eg: W = \{ su + tv | s, t \in \mathbb{R} \}$ is the span of $\{ u, v \}$. **Remark**: For simplicity, we can also say W is the span of **u**, **v**. lest few poges)

ノ not rigonne

Span of Unit Vectors

Claim: span $\{e_1, e_2, ..., e_n\} = \mathbb{R}^n$

Reverse: (formal term defined next page) $\{e_1, e_2, ..., e_n\}$ is the spanning set of \mathbb{R}^n

 R^n . Unit vectors $\overrightarrow{\mathcal{L}} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \overrightarrow{\mathcal{L}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad -1, \quad \overrightarrow{\mathcal{L}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$ $\begin{array}{c} \mathsf{Span}\left(\left\{\vec{e_1},\ldots,\vec{e_n}\right\}\right) = \mathbb{R}^n \\ \mathsf{Imp}^{l, e_1} & \left\{\vec{e_1},\cdots,\vec{e_n}\right\} \text{ as a special}^{\prime} \text{ set} \\ \mathsf{Span}\left\{\vec{e_1},\cdots,\vec{e_n}\right\} \text{ as a special}^{\prime} \\ \mathsf{Span}\left\{\vec{e_1},\vec{e_2},\cdots,\vec{e_n}\right\} \end{array}$

Definition: Spanning Set

Definition 12.2 (spanning set) Suppose V is a linear space. Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V. If span (\mathcal{U}) = V, then we say \mathcal{U} is a spanning set of V, or \mathcal{U} spans V. $Eg: \{e_1, e_2, ..., e_n\}$ is a spanning set of \mathbb{R}^n $u \overset{\text{gen}}{\longrightarrow} V$ Span
Spangut of V **Definition: Spanning Set**
 efinition 12.2 (spanning set)

uppose V is a linear space.

uppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset of V.

span(\mathcal{U}) = V, then we say <u> \mathcal{U} is a spanning set of V.</u>
 E Spong ut of V
QU spans V. terub , **Definition: Spanning S**

Definition 12.2 (spanning set)

Suppose *V* is a linear space.

Suppose $\mathcal{U} = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$ is a subset

If span(\mathcal{U}) = V, then we say \mathcal{U} is a spanning

Eg: { $e_1, e_2, ..., e$ span(\mathcal{U}) = V, then we say \mathcal{U} is a spanning
 $\mathcal{U}: \{e_1, e_2, ..., e_n\}$ is a spanning set of \mathbb{R}^n
 $\mathcal{U}: \{ \mathbf{u}, \mathbf{v} \}$ is a spanning set of W= $\{ \underline{s\mathbf{u} + t\mathbf{v}} \}$

Eg: $\{u, v\}$ is a spanning set of $W = \{su + ty \mid s, t \in \mathbb{R}\}.$

Span of Unit Vectors

Exercise: Find a spanning set of the matrix space. e.g. $\mathbb{R}^{2\times 2}$ $\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]$

Remark: Spanning set is NOT unique. Cannot say "the spanning set".

Spong set:
$$
E_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
$$
, $E_{i2} = \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix}$

\n
$$
E_{2i} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}
$$
, $E_{2i} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ \nNon-spany at: $\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \}$ does not get.

 N space V $\iff M$ is a spaning set of V $\Rightarrow V =$ span of U

Terminology Terminology
Equivalent stater

Equivalent statements:

 $\{u_1, ..., u_n\}$ spans $\{a_1u_1 + ... + a_ku_k \mid a_1, ..., a_k \in \mathbb{R}\}$ ${a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k \mid a_1, \ldots, a_k \in \mathbb{R}}$ is the span of ${\mathbf{u}_1, \ldots, \mathbf{u}_n}.$ $\{u_1, ..., u_n\}$ is a spanning set of $\{a_1u_1 + ... + a_ku_k \mid a_1, ..., a_k \in \mathbb{R}\}$

Remark: Spanning set is NOT unique. Cannot say "the spanning set".

Eg:
$$
\{e_1, e_2, ..., e_n\}
$$
 is a spanning set of \mathbb{R}^n .
 $\{e_1, e_2, ..., e_n\}$ spans \mathbb{R}^n .
 \mathbb{R}^n is the span of $\{e_1, e_2, ..., e_n\}$.

Intersection and Spanning

Intersection: getting smaller and smaller space

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

 $\frac{16.30}{6.30}$ 16 230 $\overline{\mathbb{C}}$

We study subspace, span and column space.

Detailed summary:

3. **Column space**

- —Def: It is the span of columns of a matrix
- $-Ax = b$ solvable iff $b \in C(A)$.