Lecture 14

Dimension and Rank

Instructor: Ruoyu Sun

Today's Lecture: Outline

Today … Dimension, rank

- 1. Basis and Dimension
- 2. Rank

Strang's book: Sec 3.3, 3.4

After this lecture, you should be able to

- 1. Identify basis of common spaces
- 2. Explain why the dimension of a linear space is a well-defined
- 3. Compute the number of solutions for different (r,m,n)

Roadmap of Linear Systems

Review of Related **Contents**

The complete solution is

$$
\mathbf{x}_p + N(A) = \mathbf{x}_p + \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}.
$$

Question: Is there a "simpler" way to express span{**v**1,…, **v***m*}?

 $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are linearly independent iff the following holds: c_1 **u**₁ + … + c_k **u**_{*k*} = 0 only happens when $c_1 = ... = c_k = 0$.

General answer: If M's columns are independent, then cannot use fewer vectors to express it.

Part I Basis

Strang's book Sec. 3.4

Claim 14.1 (linear dependence and span) Suppose V is a linear space over \mathbb{R} . Suppose $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k \in V$. If $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ are linear dependent, then there exists $t \in \{1,...,k\}$ such that: i) \mathbf{u}_t is a linear combination of $\mathbf{u}_1, \ldots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \ldots, \mathbf{u}_k$. $\text{inj span} \{ \mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k \} = \text{span}(\{ \mathbf{u}_1, ..., \mathbf{u}_{t-1}, \mathbf{u}_{t-1}, ..., \mathbf{u}_k \})$

In words:

First, LD \leq = = > one element can be spanned by others.

Second, the **span** of these elements **can be further simplified.**

Corollary: If $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ are linear independent, then $\text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ can NOT be simplified (i.e. expressed as the span of $k-1$ elements)

4 unit vectors
$$
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Q1: Can we use 3 unit vectors to span \mathbb{R}^4 ?

Q2: Are there 3 vectors that span \mathbb{R}^4 ?

5 vectors
$$
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$ span R⁴.

Q1: Can we use 4 vectors in these 5 to span \mathbb{R}^4 ?

Q2: Can we use 3 vectors in these 5 to span \mathbb{R}^4 ?

Answer to Q1: No, because they are ___________________

Thus, $\{\mathbf{e}_1, ..., \mathbf{e}_4\}$ is not just a spanning set, but also a minimal spanning set (cannot be further simplified). We will give such spanning set a name: Basis.

Basis

Definition 14.1 (basis)

Suppose V is a linear space over $\mathbb R_+$ Suppose $\mathcal{U} \triangleq \{ \mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k \} \subseteq V$. We say \mathcal{U} is a basis if (i) $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ are linearly independent; (ii) $\text{span}(\mathcal{U}) = V$.

In words, a basis is a linearly independent set and span the whole space.

Eg1 $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$ is a basis of \mathbb{R}^n . (called "standard basis")

Eg2 $\{u\}$ is a basis of span $\{u\}$, if $u \neq 0$.

Preparation: Find a candidate set.

First (independence)

Check the elements are linearly independent.

Second (span)

Check any element can be expressed as a linear combination.

Basis: Exercise

—Find a basis of ℝ2×² .

$$
-\text{Find a basis of } P_2 \triangleq \{f(x) = a_0 + a_1 x + a_2 x^2 : a_0, a_1, a_2 \in \mathbb{R}\}
$$

$$
-\text{ls}\left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}1\\4\\5\end{bmatrix}\right\} \text{ a basis of } \mathbb{R}^3?
$$

$$
-\vert S \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \} \text{ a basis of } \mathbb{R}^3?
$$

Basis of Matrix Space

The set B consisting of

$$
\mathcal{B}_{11}=\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right],\ \mathcal{B}_{12}=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right],\ \mathcal{B}_{21}=\left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right],\ \mathcal{B}_{22}=\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]
$$

is a basis of $\mathbb{R}^{2\times 2}$. B is linearly independent. Also notice that $\forall A \in \mathbb{R}^{2\times 2}$,

$$
A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]=aB_{11}+bB_{12}+cB_{21}+dB_{22}
$$

In general, $\{E_{ij}, i = 1, \ldots, m; j = 1, \ldots, n\}$ is a basis of $\mathbb{R}^{m \times n}$, where E_{ij} is a matrix with only (i,j) -th entry being 1 and other entries Being 0.

Basis of Polynomial Space

1. $V = P_1$ (polynomials of degree at most 1).

(1) $\mathbf{p}_1(x) = 1$, $\mathbf{p}_2(x) = x$, $\mathbf{p}_3(x) = 2 - 3x$. Is $\mathcal{U} = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ a basis for P_1 ?

 U is linearly dependent since $\mathbf{p}_3 = 2\mathbf{p}_1 - 3\mathbf{p}_2$. No!

(2) $\mathcal{U} = \{1, x\}$ is a basis for P_1 .

2. For $V = P_n$ (polynomials of degree at most *n*),

 $\mathcal{U} = \{1, x, x^2, \cdots, x^n\}$ is a basis for P_n .

Part II Dimension

Strang's book Sec. 3.4

 $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is a basis of \mathbb{R}^3 ${ \{\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \} }$ is a basis of \mathbb{R}^3 ${ \{ \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_3 \} }$ is a basis of \mathbb{R}^3

Question: what is the next interesting quetion?

 $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is a basis of \mathbb{R}^3 ${ \{\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \} }$ is a basis of \mathbb{R}^3 ${ \{ \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_3 \} }$ is a basis of \mathbb{R}^3

Question: what is the next interesting quetion?

One answer: **Q1**: What's the smallest basis? **Q2**: What's the biggest basis? **Vote A) 3 B) 2 C) 1 A)** ∞ **B) 3 C) >3**

Too many vectors cannot be a basis

Claim 14.2a: The set of three vectors $\{v_1, v_2, v_3\} \subseteq \mathbb{R}^2$ is a linearly dependent set, thus not a basis of \mathbb{R}^2 . $\{v_1, v_2, v_3\} \subseteq \mathbb{R}^2$

Claim 14.2b: columns of
$$
\begin{bmatrix} 1 & 5 & 8 \ 3 & 8 & 27 \end{bmatrix}
$$
 are linearly dependent.

Proof:

Rewriting the Proof in Shape

Claim 14.2a equivalent to:

Claim 14.3a' ____________________ has ___________ solution

Proof (using shape of matrix, not concrete numbers):

Wide Ax=0 has Non-zero Solution

Claim 14.3: Any $(n + 1)$ vectors in \mathbb{R}^n are linearly dependent.

Lemma 14.1 Suppose $m > n$. If $\{v_1, ..., v_n\}$ is a basis of a linear space V, then any m elements $\textbf{u}_1, ..., \textbf{u}_m$ are linearly dependent.

Unique Representation and Coordinate

Proposition 14.1 (unique representation) Suppose V is a linear space with a basis $\mathcal{U} \triangleq {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k}$. Any $\mathbf{v} \in V$ can be written uniquely as a linear combination of $\mathbf{u}_1, ..., \mathbf{u}_n$, namely, there exist unique $[\alpha_1, ..., \alpha_n]^\top \in \mathbb{R}^{n \times 1}$ s.t. $\mathbf{X} = \alpha_1 \mathbf{u}_1 + \ldots + \alpha_n \mathbf{u}_n$

Definition 14.1 (**coordinates**)

 Γ_{α}

We say $\alpha_1, ..., \alpha_n$ are the coordinates of **x** with respect to the basis \mathcal{U} ,

denoted as
$$
[\mathbf{x}]_{\mathcal{U}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}
$$
.

Coordinates of Elements in Matrix Space

Eg. Matrix space.

Coordinates of $\begin{bmatrix} 1 & 5 \\ 3 & 8 \end{bmatrix}$

Dimension = Size of Bases

Theorem 14.1 (bases have same size) If $\{u_1, ..., u_m\}$ and $\{v_1, ..., v_n\}$ are bases of a linear space V, then $m = n$. First "big" Theorem in this course!

All bases have the same size!! We call it "dimension"!

Proof:

Dimension = Size of Bases

Theorem 14.1 (bases have same size) If $\{u_1, ..., u_m\}$ and $\{v_1, ..., v_n\}$ are bases of a linear space V, then $m = n$.

First "big" Theorem in this course!

All bases have the same size!! We call it "dimension"!

Definition 14.1 (**dimension**)

Suppose V is a linear space。 If V has a basis $\mathcal U$ with n elements, then we say the dimension of V is n , denoted as dim(V)= n , or V is n -dimensional.

 $dim({0}) = 0$, since ${0}$ has no basis vector. Eg:

 $\dim(\mathbb{R}^n) = n$, since $\{e_i, i = 1, \dots, n\}$ is the standard

 $\dim(\mathbb{R}^{2\times 3})=6$, since

basis.

Remark: If there is no finite set of elements that can span V , we say V Is infinite dimensional.

Dimension Measures "Size" of Space

We provide a perspective to understand dimension.

It comes from an old question: **Question**: Is a plane "larger" than a line?

You may say: surely larger; but in what sense? **Option 1**: # of points.

Option 2: Dimension.

What is the dimension of the following linear spaces?

Space of $n \times n$ diagonal triangular matrices

Space of $n \times n$ upper triangular matrices

$$
P_n = \left\{ \sum_{i=0}^n a_i x^i | a_i \in \mathbb{R} \right\}
$$

$$
C \left[\begin{bmatrix} 1 & 0 & a & 0 & c \\ 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 1 & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right]
$$

A basis is a linearly independent set and span the whole space.

For finite-dimensional linear space:

 A basis is a minimal spanning set (deleting a vector from the basis cannot span the whole space),

Also a maximal independent set

(adding a vector to the basis makes the set linearly dependent)

Quicker Way to Check Basis

Proposition 14.2

Consider a linear space V with $dim(V) = n$. If $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are linearly independent, then they form a basis of V. If $\mathbf{u}_1, ..., \mathbf{u}_n \in V$ can span V, then they form a basis of V.

Remark: For n vectors, only need to check either "span" or "lin. indep.", not both.

$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, are linearly independent, thus a basis of 1 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, \mathbf{I} 2 1 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, \mathbf{I} 2

3 are linearly independent, thus a basis of \mathbb{R}^3 .

Quicker Way to Check Basis

Proposition 14.2

Consider a linear space V with $dim(V) = n$. If $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are linearly independent, then they form a basis of V. If $\mathbf{u}_1, ..., \mathbf{u}_n \in V$ can span V, then they form a basis of V.

Remark: For n vectors, only need to check either "span" or "lin. indep.", not both.

E.g.
$$
\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ are linearly independent, thus a basis of \mathbb{R}^3 .

Recall: Lec 13:

n \times *n* matrix A is invertible iff the *n* columns are linearly independent.

From Prop. 14.2, this is equivalent to:

- a) Its columns form a basis.
- b) Its columns span the whole space, i.e., Ax=b is solvable for any b.

Invertibility Conditions

Theorem 14.2a (Equivalent Conditions for Invertibility) Let $A \in \mathbb{R}^{n \times n}$.

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system $A x = 0$ has a unique solution $x = 0$
- 3. A is a product of elementary matrices
- 4. A has n pivots; or equivalently: rank(A) = n
- 5. The columns of A span \mathbb{R}^n .
- 6. The columns of A are linearly independent;
- 7. The columns of A form a basis;
- 8. dim($C(A)$) = n.
- 9. Ax=b is solvable for any b Equation solving

Most major concepts we learned so far are related to invertibility.

Part III Rank

Strang's book Sec. 3.4

The number of pivots r is important.

It is so important that we give it a name.

Definition 14.3 (rank) The rank of a matrix A is the number of pivots, denoted as rank(A).

Remark: This is a computational definition.

In the future, we will introduce equivalent definitions that are more fundamental.

Property: For $m \times n$ matrix, rank(A) $\leq \min\{m, n\}$.

of Solutions for Different Cases of m, n and r

After proper re-ordering of columns, any RREF can be written as

$$
\begin{bmatrix} I_r & F \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times (n-r)} \end{bmatrix} \begin{bmatrix} x_P \\ x_F \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{b}}_{r\times 1} \\ \mathbf{c}_{(m-r)\times 1} \end{bmatrix}.
$$

Case 1: $r < m$: [there are zero rows] $[get 0 = non-zero]$ $[get 0 = 0$ equations] lF $\mathbf{c}_{(m-r)\times 1}$ ≠ $\mathbf{0}$: REPORT No solution. ELSE

Dependent on how large n,m,r, some of the blocks may disappear.

After proper re-ordering of columns, any RREF can be written as

$$
\begin{bmatrix} I_r & F \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times (n-r)} \end{bmatrix} \begin{bmatrix} x_P \\ x_F \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{b}}_{r\times 1} \\ \mathbf{c}_{(m-r)\times 1} \end{bmatrix}.
$$

After proper re-ordering of columns, any RREF can be written as

$$
\begin{bmatrix} I_r & F \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times (n-r)} \end{bmatrix} \begin{bmatrix} x_P \\ x_F \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{b}}_{r\times 1} \\ \mathbf{c}_{(m-r)\times 1} \end{bmatrix}.
$$

After proper re-ordering of columns, any RREF can be written as

$$
\begin{bmatrix} I_r & F \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times (n-r)} \end{bmatrix} \begin{bmatrix} x_P \\ x_F \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{b}}_{r\times 1} \\ \mathbf{c}_{(m-r)\times 1} \end{bmatrix}.
$$

Dependent on how large n,m,r, some of the blocks may disappear.

Four types for R $\begin{bmatrix} I \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ $\begin{bmatrix} I & F \end{bmatrix}$ $\begin{bmatrix} I & F \ 0 & 0 \end{bmatrix}$
Their ranks $r = m = n$ $r = m < n$ $r = n < m$ $r < m, r < n$ # of solutions 1 ∞ 0 or 1 0 or ∞ # of solutions when $\mathbf{c}_{(m-r)\times1} = 0$ 1 ∞ 1 ∞

Relation of Dimension and Rank

Thm 14.2 implies: rank(A) = $n \leq z$ dim(C(A)) = n .

Let's recall what it means.

rank(A) = $n \leq x$ n pivots ϵ ==> Ax=0 has unique solution 0 i.e. Ax=0 has no non-zero solution <==> n columns are linearly independent $\langle == \rangle C(A)$ has dimension n

[Def of rank]

[row transf. does not change solution]

[Def of lin. ind.]

[Fact 14.1; Def of dim]

Anything interesting to guess?

Guess: rank $(A) = dim(C(A))$, for any A.

Definition: Row Space

Definition 14.2 (row space)
\nSuppose
$$
A = \begin{bmatrix} \mathbf{a}_{(1)}^{\top} \\ \cdots \\ \mathbf{a}_{(m)}^{\top} \end{bmatrix} \in \mathbb{R}^{m \times n}
$$
. is a linear space.
\nThen span($\{\mathbf{a}_{(1)}, ..., \mathbf{a}_{(m)}\}$) $\subseteq \mathbb{R}^n$ is called the row space of A,
\ndenoted as **Row(A)**.

In words: **A's row space is the span of A's row vectors**.

Remark: $Row(A) = C(A^T)$.

Eg: C(
$$
I_n
$$
) =
\nEg: Row space of $A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}$ is the set
\n
$$
\left\{ \alpha_1 [1,0]^T + \alpha_2 [4,3]^T + \alpha_3 [2,3]^T | \alpha_1, \alpha_2 \in \mathbb{R} \right\}.
$$

What is dim(Row(R))?

Observation 1: Span{rows} = span { pivot rows}.

Observation 2: Pivot rows are linearly independent. Why?

Together: $dim(Row(R)) = #$ of pivots = r.

Definition 14.3 (**row-rank and column rank**) Row-rank of A is defined as dim(Row(A)), denoted as $r_R(A)$. Column-rank of A is defined as $dim(C(A))$, denoted as $r_C(A)$.

Theorem 14.3 Row-rank, column-rank and rank of a matrix are the same, i.e., $r_R(A) = r_C(A) = \text{rank}(A)$.

Equivalent expression: **dim(Row(A)) = dim(C(A)) = # of pivots.**

Example

$$
A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 3 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}
$$
 Row(A) = **Span** ([1, 2, 0, 0]^T, [0, 0, 1, 0]^T, [0, 0, 0, 1]^T
\n
$$
r_R(A) = 3.
$$

\n
$$
R = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
 C(A)= **Span** $\left(\begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} \right)$
\n
$$
r_C(A) = 3.
$$

\n3 pivots,
\nSo rank(A) = 3.

Thus,
$$
r_R(A) = r_C(A) = \text{rank}(A)
$$
.

Concluding Part

Strang's book Sec. 3.4

How to Fill the Gap Between Courses and Homework & Exam?

First, figure out all logic & proofs of the lectures

Second, work on more practice problems.

—Different from high school:

High school: Teachers (almost) provide you all needed problems.

University: You need to seek more practice problems yourself. [Active learning]

—Where? Textbook practice problems.

—Too many? Pick a few to work on. It is part of the challenge.

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

Dimension, Rank and Nullity.

Detailed summary:

1. Basis and Dimension

- —Dimension of linear space = size of any basis.
- —Theorem 14.1: Any basis has the same size (size = # of vectors in the basis).

2. **Rank**

Column/row-rank = dim of column/row space **Rank theorem: row-rank = column-rank = rank** $(=$ **# of pivots)**

3. Nullity

- **—Nullity = dimension of null space.**
- **—Nullity theorem:** Nullity + rank = n.

Byproduct: Conditions for checking invertibility by

dim, rank, nullity, linear independence.

Appendix: Proof of Rank = Row Rank = Column Rank

Revisiting Solution Set of Ax=0

 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ can express $\mathbf{v}_4, \mathbf{v}_5$. They are linearly independent. **Fact 1**: In RREF, free columns can be expressed as LC of pivot columns.

Lemma 14.2 Elementary row operations do not change dimension of column space.

Elementary Row Operation does Not Change LC Relation

Consider the matrix \hat{R} that becomes R after one step of elementary row operation.

$$
\hat{R} = \begin{bmatrix} 1 & 0 & a & -\beta & c - \beta e \\ 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 1 & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\beta R_3 + R_1} \begin{bmatrix} 1 & 0 & a & 0 & c \\ 0 & 1 & b & 0 & d \\ 0 & 0 & 0 & 1 & e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\Longleftrightarrow (-c)\mathbf{v}_1 + (-d)\mathbf{v}_2 + (-e)\mathbf{v}_4 + \mathbf{v}_5 = 0.
$$

Check:
$$
(-c)\mathbf{v}_1 + (-d)\mathbf{v}_2 + (-e)\hat{\mathbf{v}}_4 + \hat{\mathbf{v}}_5 =
$$

Claim 14.1: Elementary row operation does not change "linear combination" relation.

i.e. if $\alpha_1 \cdot$ (Column 1) + … + $\alpha_n \cdot$ (Column *n*) = 0 holds for M, then it holds for the row-transformed matrix too.

Consider the matrix \hat{R} that becomes R after one step of elementary row operation.

$$
W = \begin{bmatrix} \mathbf{w}_1^{\top} \\ \mathbf{w}_2^{\top} \\ \mathbf{w}_3^{\top} \\ \mathbf{w}_4^{\top} \end{bmatrix} \stackrel{\beta R_3 + R_1}{\longrightarrow} \begin{bmatrix} \beta \mathbf{w}_3^{\top} + \mathbf{w}_1^{\top} \\ \mathbf{w}_2^{\top} \\ \mathbf{w}_3^{\top} \\ \mathbf{w}_4^{\top} \end{bmatrix} = \hat{W}.
$$

$$
\text{Row}(W) = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4\}
$$

 $\text{span}\{\beta \mathbf{w}_3 + \mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4\} = \text{Row}(W).$

Claim 14.2: Elementary row operation does not change the row space.

dim(Row(A)) = r.

 $dim(Row(R)) = #$ of pivots = r