Lecture 15

Four Fundamental Subspaces

Instructor: Ruoyu Sun

Today's Lecture: Outline

Today ... Four Fundamental Subspaces

- 1. Full-rank
- 2. Nullity
- 3. Orthogonal complement
- 4. Four fundamental subspaces

Strang's book: Sec 3.4, 3.5

After this lecture, you should be able to

- 1. Tell the # of solutions of full-row-rank, full-column-rank matrices
- 2. Judge orthogonal complement of another subspace
- 3. Tell four fundamental subspaces and their relations

Review of Related Contents

Review of Linear Independence and Basis

 $\mathbf{u}_1, \dots, \mathbf{u}_n$ are linearly independent iff the following holds: $c_1\mathbf{u}_1 + \dots + c_k\mathbf{u}_k = 0$ only happens when $c_1 = \dots = c_k = 0$.

u₁,..., u_n form a basis of V iff the following two hold:
i) they are linearly independent; [no redundant information; not too many]
ii) they span V. [no loss of information; not too few]

Eg1 { $\mathbf{e}_1, \dots, \mathbf{e}_n$ } is a basis of \mathbb{R}^n . (called "standard basis") **Eg2** { $E_{ij}, i = 1, \dots, m; j = 1, \dots, n$ } is a basis of $\mathbb{R}^{m \times n}$.

Review of Dimension and Rank

Theorem 14.1 (bases have same size) If $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ are bases of a linear space V, then m = n.

```
First big
supporting
Theorem
in this course!
```

All bases have the same size!! We call it "dimension"!

Theorem 14.3 Row-rank, column-rank and rank of a matrix are the same, i.e., $r_R(A) = r_C(A) = \operatorname{rank}(A)$. Second big supporting Theorem in this course!

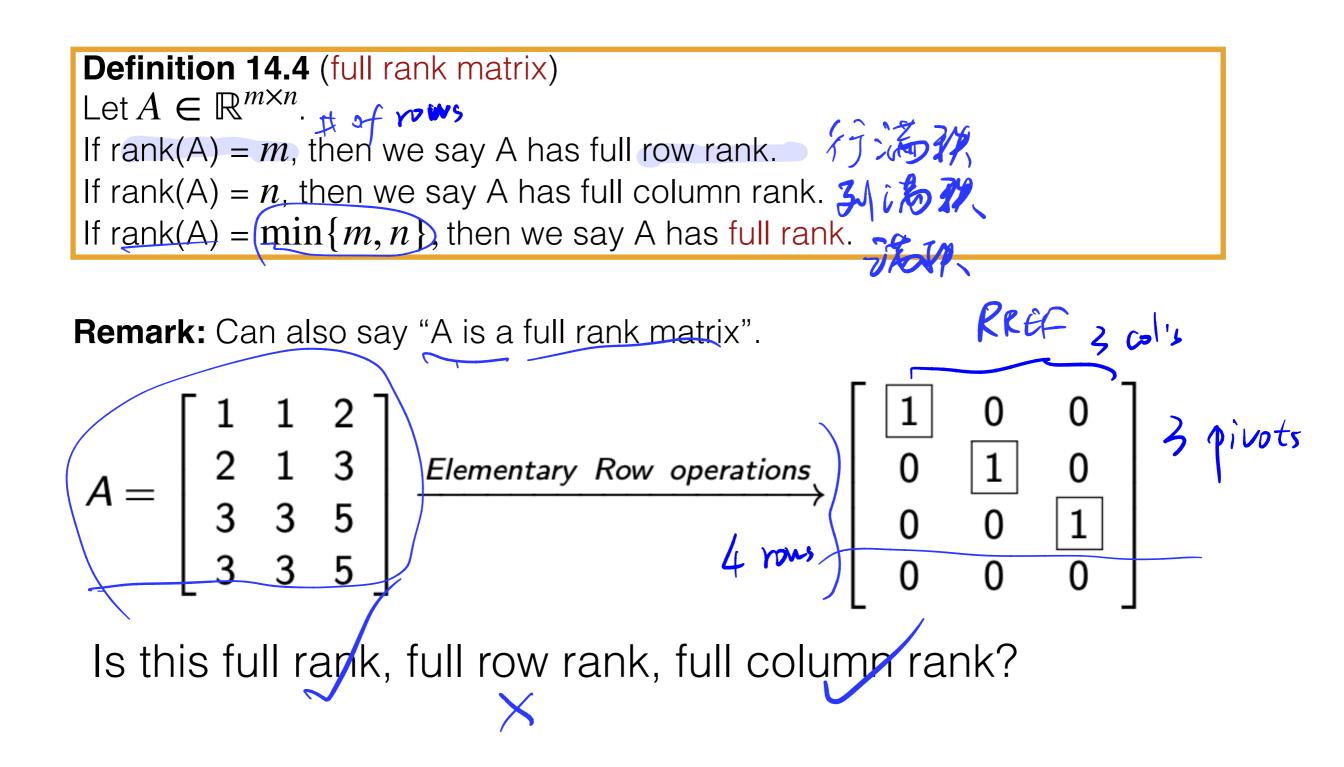
Equivalent expression: dim(Row(A)) = dim(C(A)) = # of pivots.

Disclaimer: Maybe "PA=LU" is another "big" theorem, but not a "supporting"-type theorem.

Supporting theorems: They are so basic that you will take them for granted after 1 year, or even forget they are "theorems"!

Part I Full Rank Matrices

Full Rank Matrix



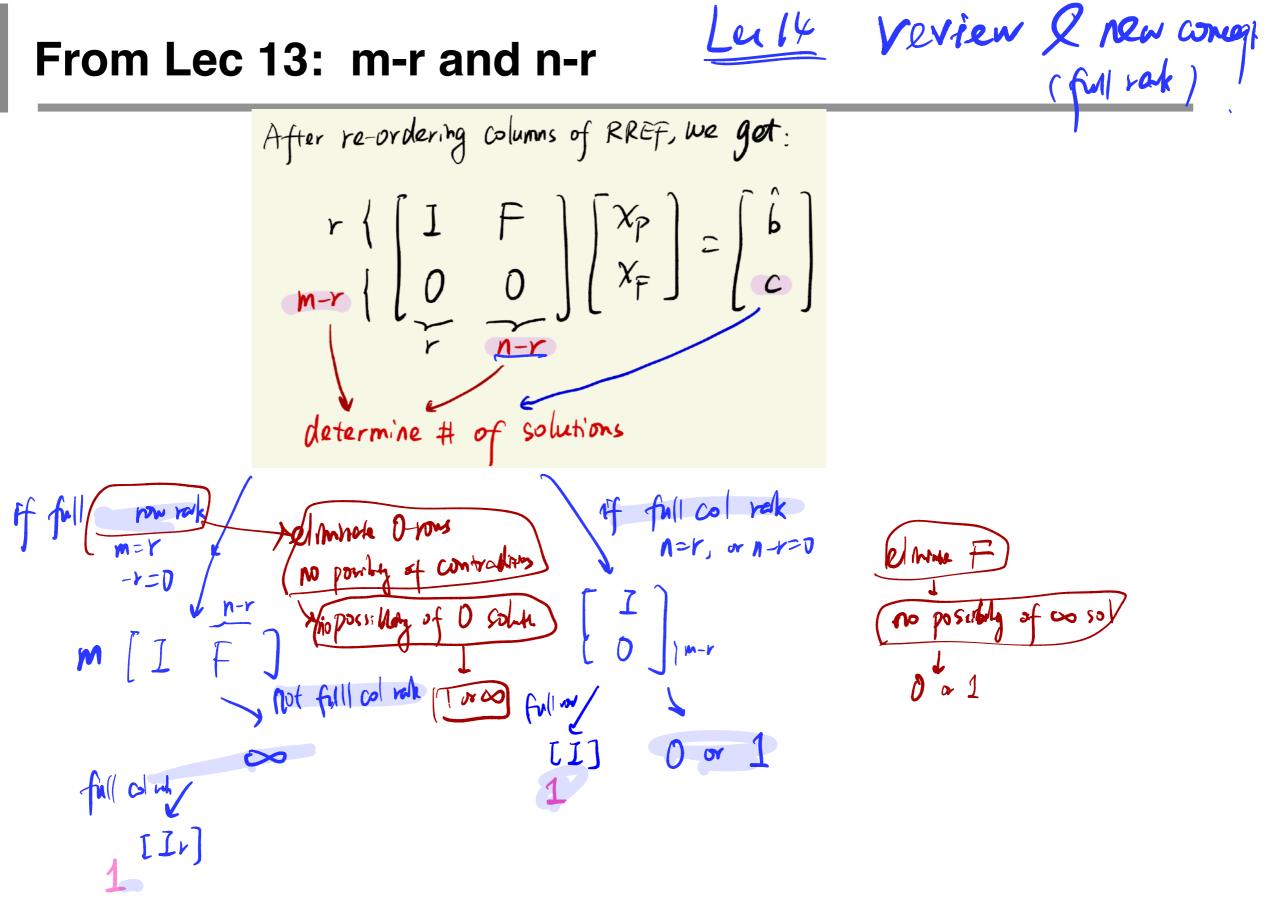
Recall:
$$m - r, n - r$$
 are critical for # of solutions. $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

m - r shall be interpreted as (# of rows) - (row rank)

n - r shall be interpreted as (# of columns) - (col rank)

Think: What's special about "full row rank" and "full col rank" matrix?

From Lec 13: m-r and n-r



From Lec 13: m-r and n-r

After re-ordering columns of RREF, we get:

$$r\left(\begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{F} \\ x_{F} \end{bmatrix} = \begin{bmatrix} \hat{b} \\ c \end{bmatrix}$$

 $m-r\left(\begin{bmatrix} 0 & 0 \\ -r \end{bmatrix} \begin{bmatrix} x_{F} \\ x_{F} \end{bmatrix} = \begin{bmatrix} \hat{b} \\ c \end{bmatrix}$
determine # of solutions

Full Row rank and Full Column rank

Proposition 15.1: If rank(A) = n, i.e., full column rank, then Ax = b has at most one solution

(# of solutions must be 0 or 1; eliminate possibility of ∞).

This means: F (free var's) exists in RREF.

Relation: unique representation by indepedent set

Full Row rank and Full Column rank

Proposition 15.1: If rank(A) = n, i.e., full column rank, then
Ax = b has at most one solution $0 \\ 1$ (# of solutions must be 0 or 1; eliminate possibility of ∞).This means: F (free var's) exists in RREF.

Proposition 15.2: If rank(A) = m, i.e., full row rank, then Ax = b has at least one solution (# of solutions must be 1 or ∞ ; eliminate possibility of 0) This means: no zero rows.

Corollary 15.1 If rank(A) = m = n, then Ax=b has exactly one solution.

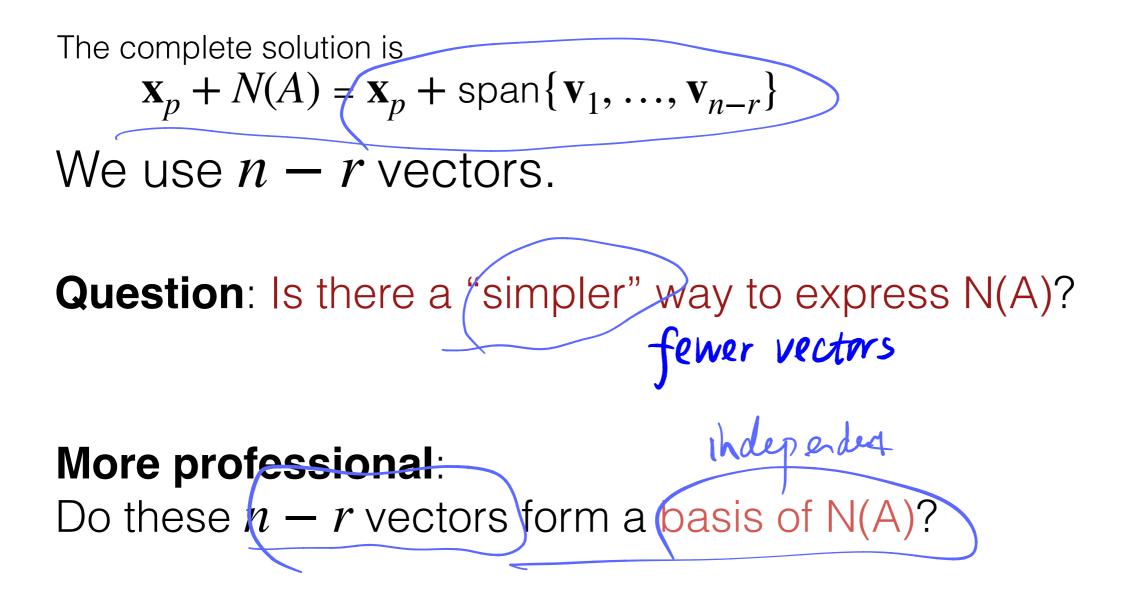
 $\chi = A^{-1}b$

Square, then invertible

Part II Nullity

Strang's book Sec. 3.4

Back to Question on Expressing Solution Set



Express Solution Set Using RREF [I, F; 0, 0]

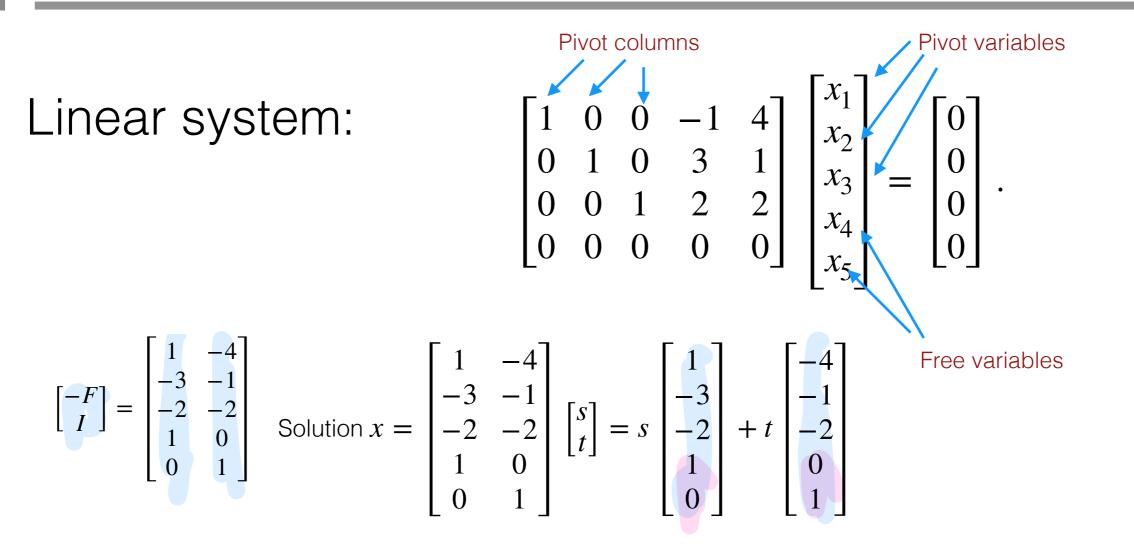
Suppose RREF
$$\begin{bmatrix} I & F & f \\ 0 & 0 & f \\ 0$$

Are Columns Linearly Independent?

We know:
$$N(A) = \text{Span of col's of } \begin{bmatrix} -F \\ Jer \end{bmatrix}$$

 $Fs \neq ho simplificable?
 $Q. \quad Are \quad Col's \quad of \quad \begin{bmatrix} -F \\ I \end{bmatrix}$ independent?
 $A. \quad Yes.$
 $Part I. \quad Write \quad \begin{bmatrix} -F \\ I \end{bmatrix} = \begin{pmatrix} F_{1} & -- & F_{n-r} \\ E_{1} & -- & F_{n-r} \\ E_{1} & -- & F_{n-r} \\ \hline E_{2} & -- & F_{n-r} \\$$

Solution of Ax=0



The two columns of M are linearly independent. Why?

In general, (n - r) columns of M are linearly independent.

Why RREF provides (n-r) indep. Columns?

$$\begin{bmatrix} -F\\ I \end{bmatrix}$$

$$O N(A) = \text{Span of columns of } \begin{bmatrix} -F\\ I \end{bmatrix}$$

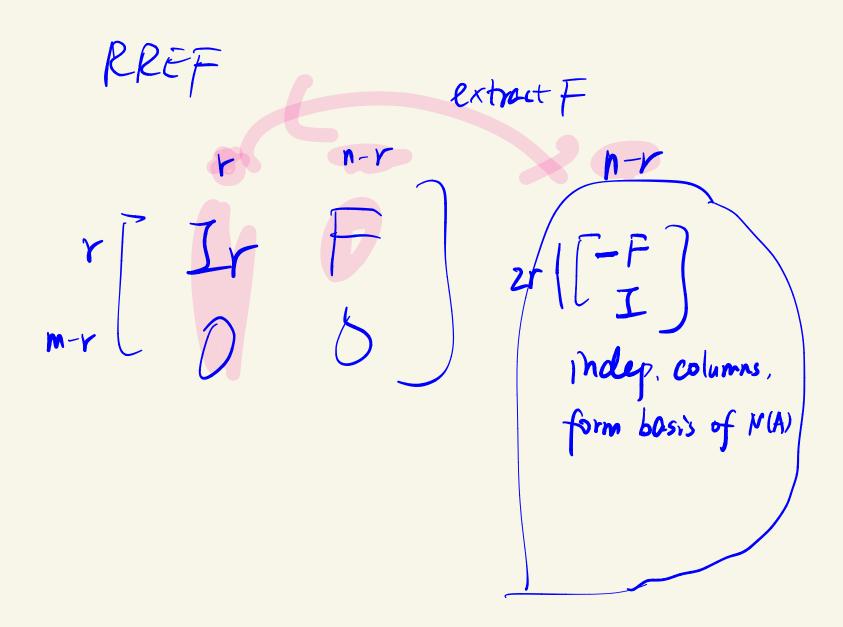
$$O O(A) = \text{Span of columns of } \begin{bmatrix} -F\\ I \end{bmatrix}$$

$$O O(A) = \text{Span of columns of } \begin{bmatrix} -F\\ I \end{bmatrix}$$

$$O O(A) = \text{Span of columns of } \begin{bmatrix} -F\\ I \end{bmatrix}$$

$$O O(A) = \text{Span of } O(A)$$

$$V(A) = \text{Span of } O(A)$$



Nullity

Definition 15.1 (Nullity)

The dimension of the null space dim(N(A)) is called the "nullity" of A.

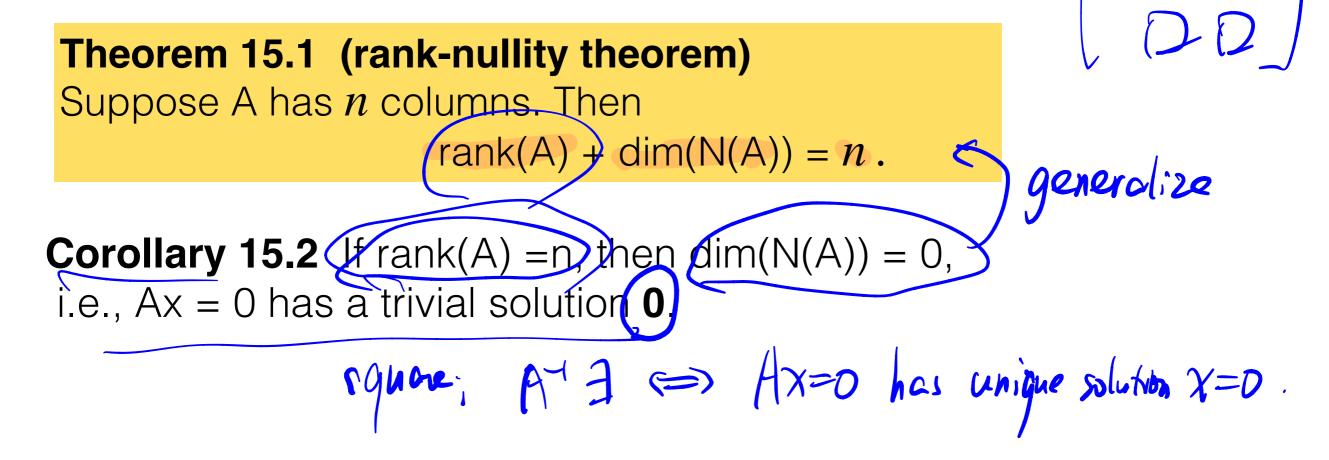
"Nullity" is the "true size" of solution set.

Nullity

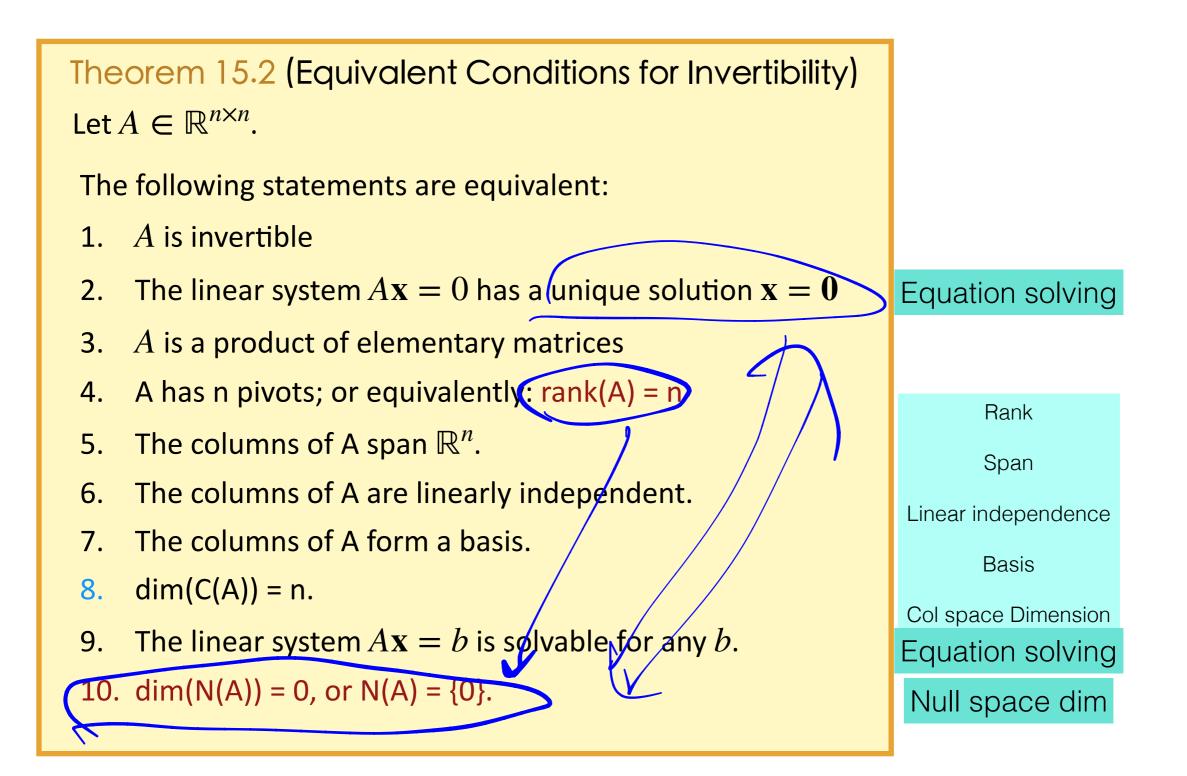
Definition 15.1 (Nullity) The dimension of the null space dim(N(A)) is called the "nullity" of A.

"Nullity" is the "true size" of solution set.

Previous slide shows: dim(N(A)) = n - r. Equivalently:



Invertibility Conditions



Part III Orthogonality

Strang's book Sec. 3.4

Motivation

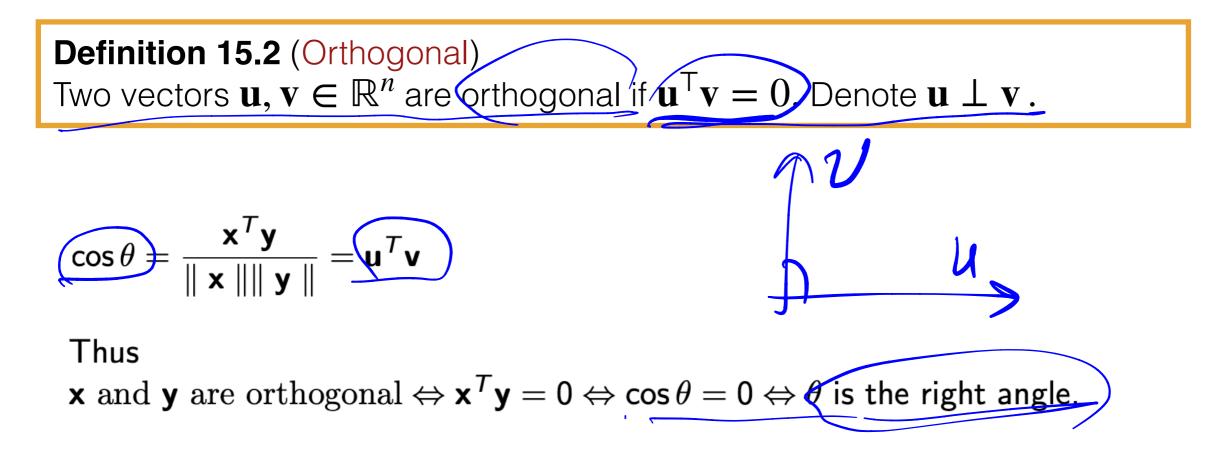
To better understand rank-nullity theorem, need to introduce: Orthogonality.

Motivation: Row form of Ax=0.

Row form:

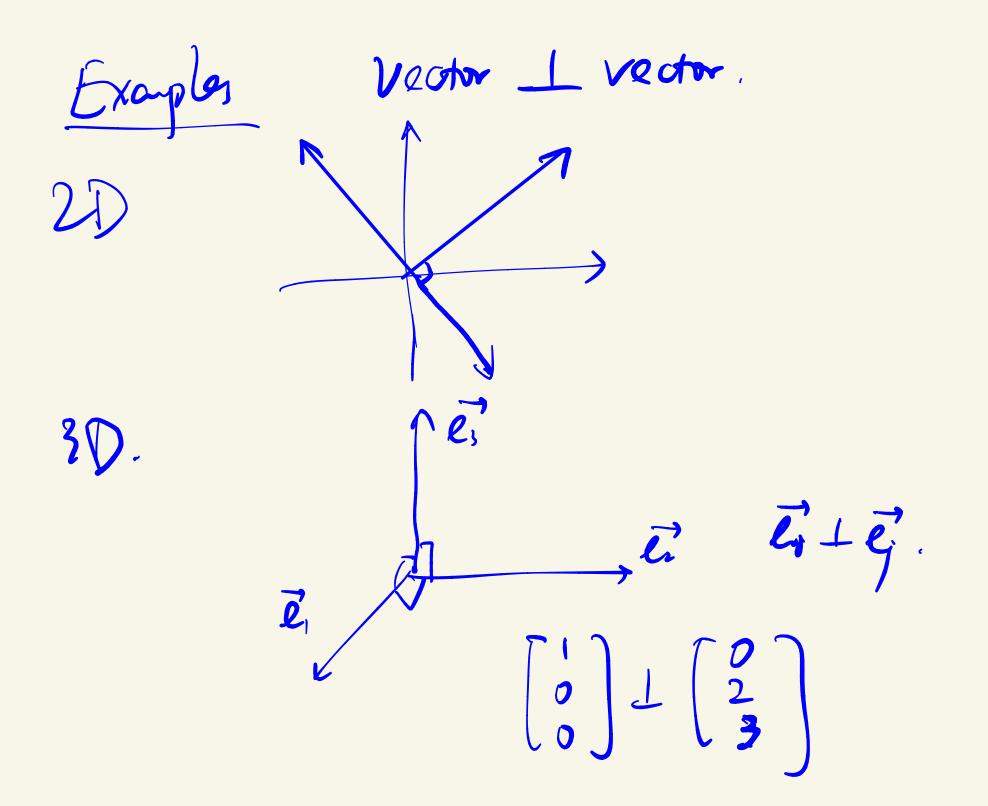
$$\begin{bmatrix} \mathbf{a}_{(1)}^{\mathsf{T}} \\ \mathbf{a}_{(2)}^{\mathsf{T}} \\ \cdots \\ \mathbf{a}_{(n)}^{\mathsf{T}} \end{bmatrix} \mathbf{x} = \mathbf{0}$$

Orthogonality



Examples:

Vectors $[3, 2]^T$ and $[-4, 6]^T$ are orthogonal in \mathbb{R}^2 . Vectors $[2, -3, 1]^T$ and $[1, 1, 1]^T$ are orthogonal in \mathbb{R}^3 .



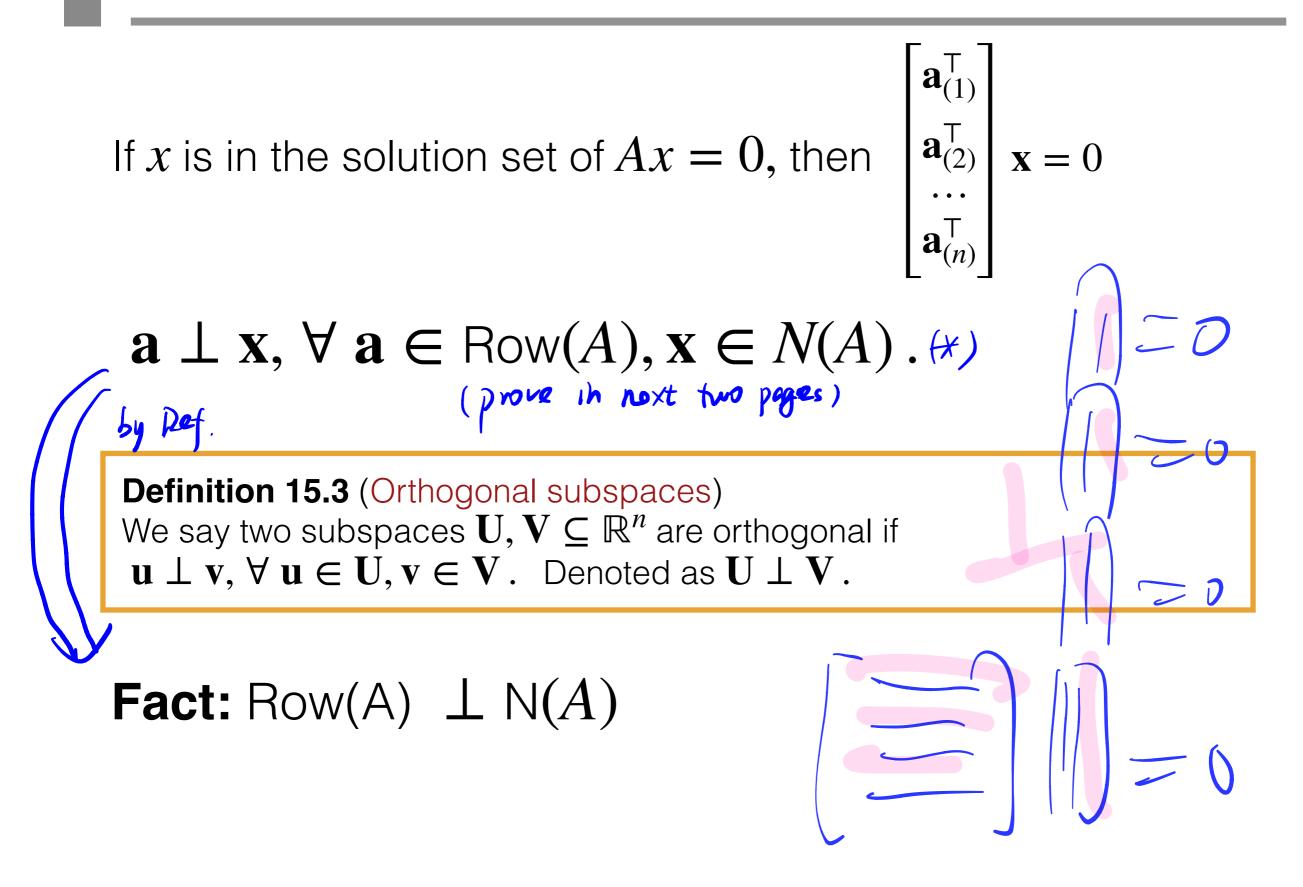
Vector _ Space. High school. one (se I two line,) I place of two line. Vec 1 2D spore " Enterd, Vec 1 any subspore U. Pet vel, Un a subspace of U. v-Unif v-U, VieU.

$$\frac{Space \perp Space}{\overline{v}} + \frac{Space}{\overline{v}} + \frac{Space}{\overline{v}$$

4D space

(

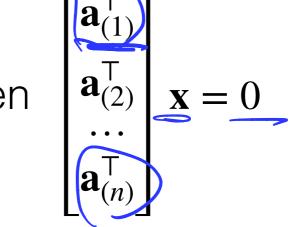
示意图(illustrethan).



Orthogonal Subspaces $2x^{4}x^{2}$ If *x* is in the solution set of Ax = 0, then

 $\mathbf{x} \in N(A) \Longrightarrow \mathbf{a} \perp \mathbf{x}, \forall \mathbf{a} \in \operatorname{Row}(A)$ $\underbrace{\times \in N(A) \bigoplus A \times = 0}_{Yow form} \overrightarrow{O_{(i)}} \times = 0, i = 1, \dots, n.$ $(\Rightarrow) \times \perp \overrightarrow{O_{(i)}} \forall i.$ $(\Rightarrow) \times \perp \overrightarrow{O_{(i)}} \forall i.$

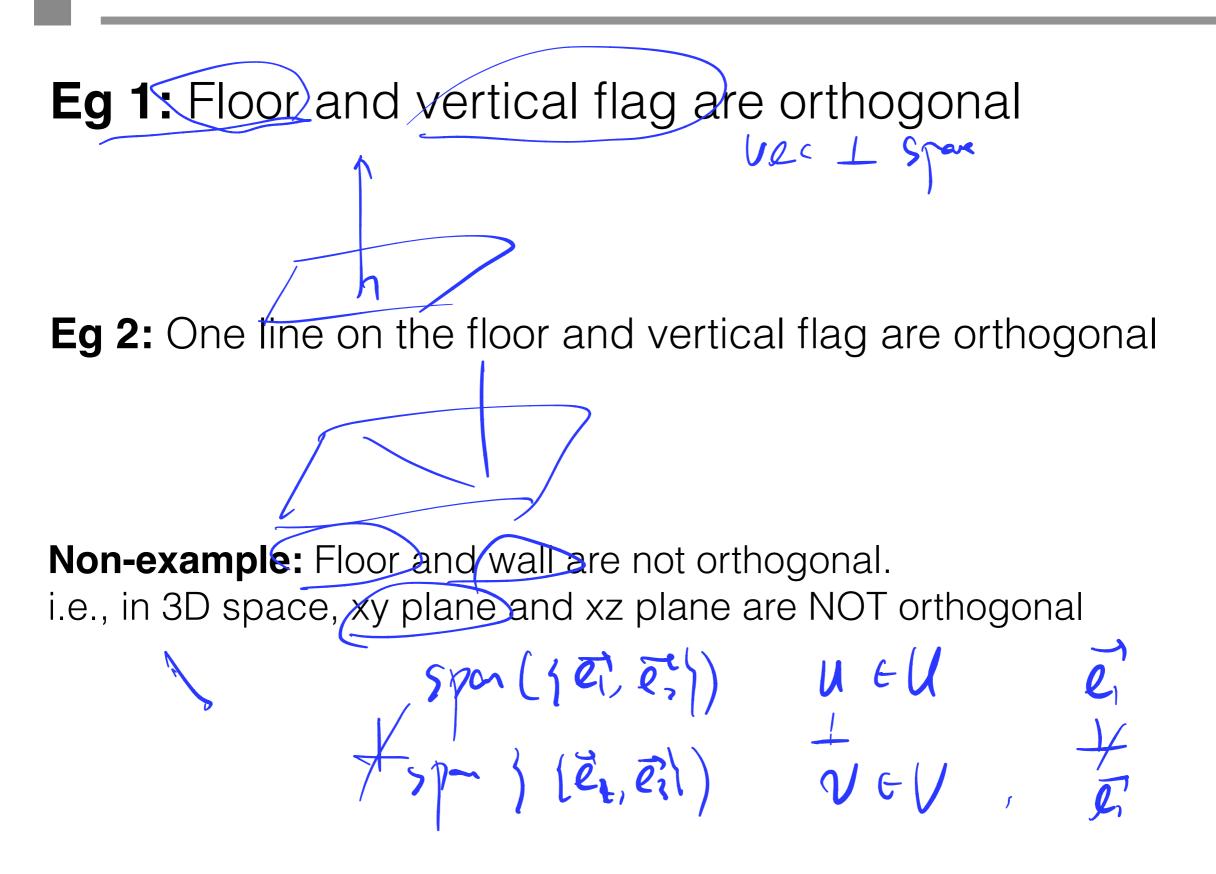
$$2\chi_1 + 4\chi_2 = 0 \iff \begin{bmatrix} 2 \\ 4 \end{bmatrix} \perp \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$

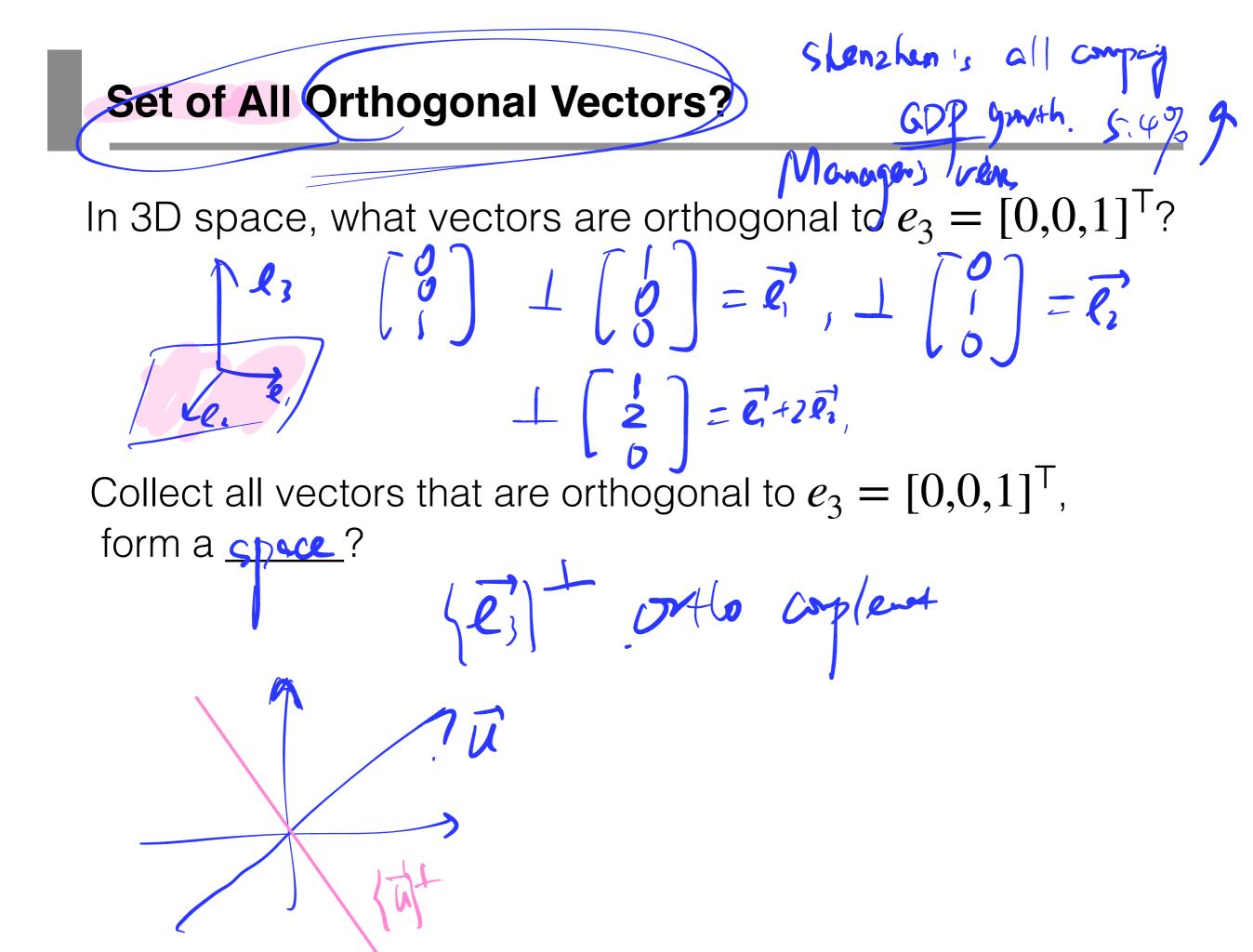


 $A\vec{x}=0 \iff \vec{x} \perp Pow(A)$ Now ory \vec{X} sotrafy $A\vec{X} = 0, \implies \vec{X} \perp Row(A)$ all of such x N(A)

DV(A) L Row (A).

Examples and Non-example





Orthogonal Complement of Subspace

Definition: A vector v is orthogonal to subspace U iff $\underline{V \perp U}$, $\forall u \in U$

There can be many vectors that are orthogonal to subspace U. Collect all of them, we obtain $\underline{\bigcirc}$

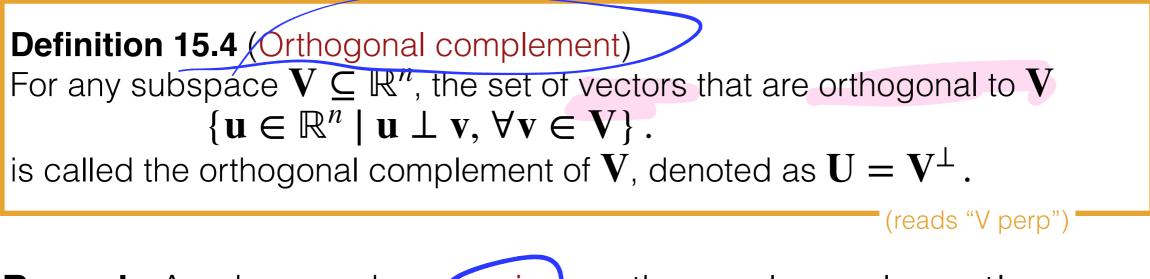
Diagram

 $span(\{e_i, e_i\})^{\perp} = span(\{e_i, e_{i_i}, e_{i_i}\})$

Orthogonal Complement of Subspace

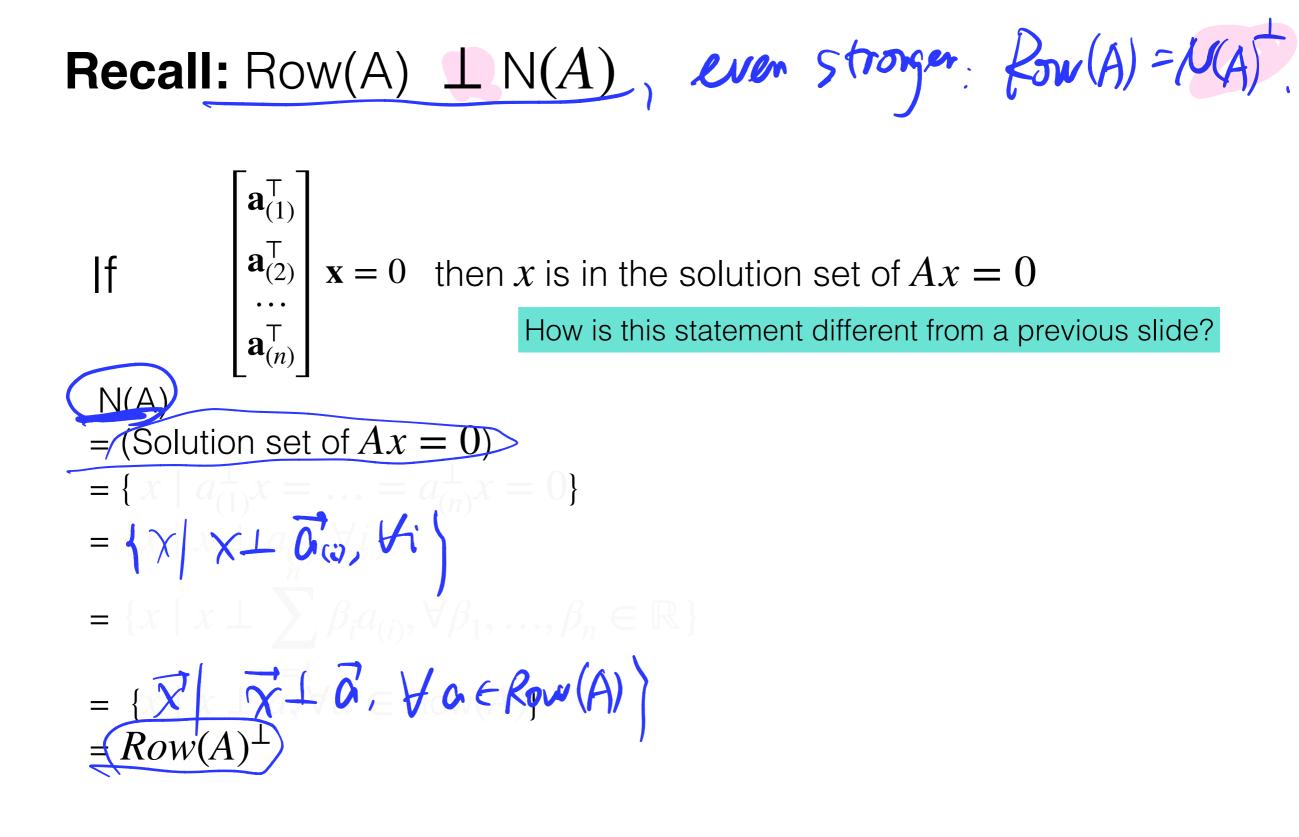
Definition: A vector v is orthogonal to subspace U iff _____

There can be many vectors that are orthogonal to subspace U. Collect all of them, we obtain _____

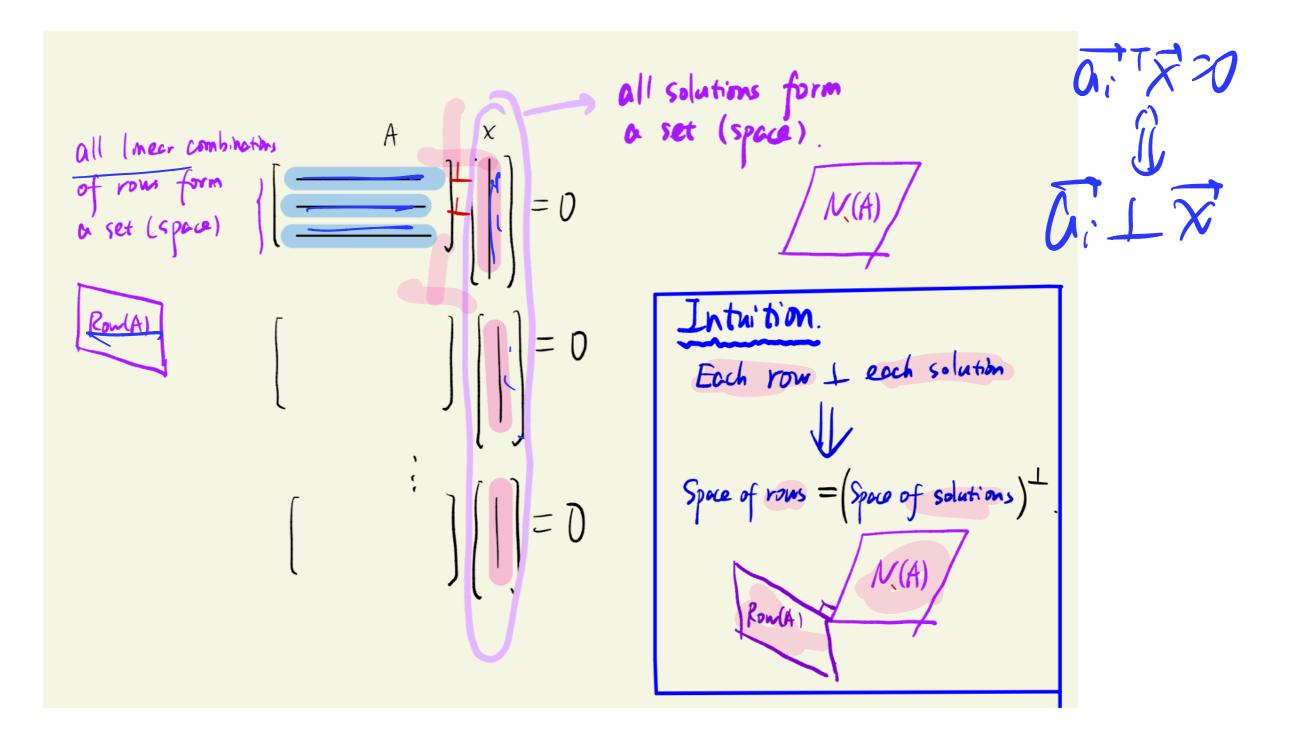


Remark: A subspace has a unique orthogonal complement!

Orthogonal Complement: Matrix Row/Null Space



Intuition



Examples and Non-example

Eg 1: Floor = (vertical flag)^{\perp}, Or in 3D space, span({ e_1, e_2 }) = span({ e_3 })^{\perp}

Eg 2: in 2D, x-axis = $(y-axis)^{\perp}$, Or span($\{e_1\}$) = span($\{e_2\}$)^{\perp}

Non-example: One line on the floor \neq (vertical flag)^{\perp} Or in 3D, x-axis \neq (y-axis)^{\perp}.

Facts () $Pow(A) \equiv N(A)^{\perp}$. (just now) $(2) \operatorname{dum}(\operatorname{Row}(A)) + \operatorname{dum}(\operatorname{Au}(A)) = n_{-}$ (20 mm ag.) Guess. (not just matrix) $U = V + S(R^{n}) = 0 \quad dm (U) + dm (U) = n$ combine dim to get whole dim combine to get ucho le space

Dimension of Orthogonal Complement

Theorem 15.2 (dim of V perp)
Suppose S is a subspace of
$$\mathbb{R}^n$$
. Then S^{\perp} is a subspace and
 $\dim(S) + \dim(S^{\perp}) = n$. An $S_n = n$
Furthermore, if $\{\mathbf{u}_1, ..., \mathbf{u}_r\}$ is a basis of S, and $\{\mathbf{u}_{r+1}, ..., \mathbf{u}_n\}$ is a
basis of S^{\perp} , then $\{\mathbf{u}_1, ..., \mathbf{u}_r, \mathbf{u}_{r+1}, ..., \mathbf{u}_n\}$ is a basis of \mathbb{R}^n .
Proof: see next page; for reading.
Proof: see next page; for reading.
Remark: $(S^{\perp})^{\perp} = S$.
 M_n whole d_n
 M_n whole d_n
 M_n whole d_n
 M_n whole d_n

Reading: Proof of Thm 15.2

Proof.

(1) If $S = \emptyset$, then $S^{\perp} = \mathbb{R}^{n}$, the statement is true. (2) Assume that $S \neq \emptyset$, then let $\{\mathbf{u}_{1}, \dots, \mathbf{u}_{r}\}$ be a basis for S, let $A = [\mathbf{u}_{1}, \dots, \mathbf{u}_{r}]$, then S = Col(A), $rank(A) = rank(A^{T}) = r$ and

$$S^{\perp} = Col(A)^{\perp} = Null(A^{T})$$

By the Rank-Nullity theorem, we have $rank(A^{T}) + dim(Null(A^{T})) = n$, thus

$$\dim S + \dim S^{\perp} = n$$

Now suppose that the following linear combination is zero, i.e.,

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r + \alpha_{r+1} \mathbf{u}_{r+1} + \dots + \alpha_n \mathbf{u}_n = \mathbf{0}$$

then

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_r \mathbf{u}_r = -\alpha_{r+1} \mathbf{u}_{r+1} - \cdots - \alpha_n \mathbf{u}_n$$

The LHS is a vector in S and the RHS is a vector in S^{\perp} , since $S \cap S^{\perp} = \{\mathbf{0}\}$, then

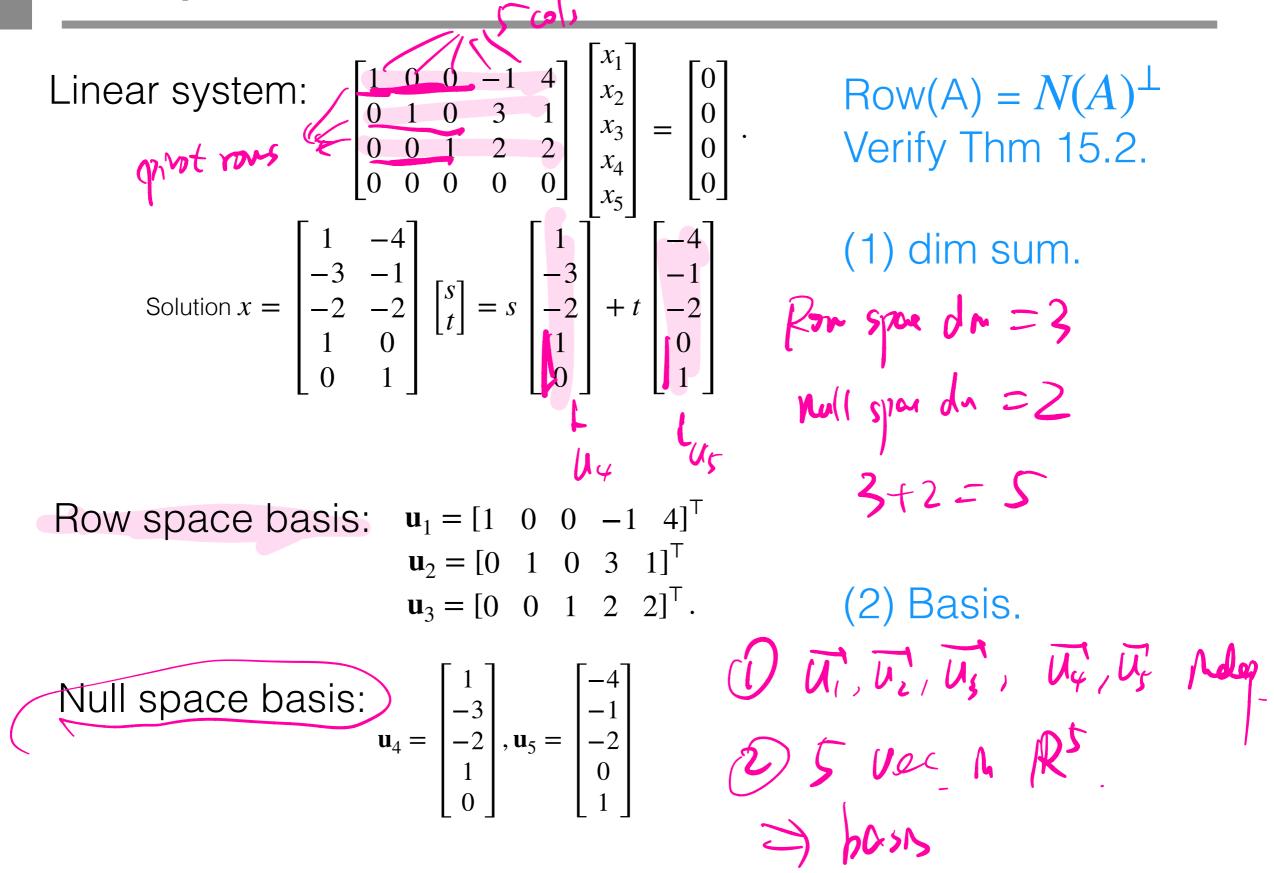
 $\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r = \mathbf{0} = -\alpha_{r+1} \mathbf{u}_{r+1} - \dots - \alpha_n \mathbf{u}_n$

Since $\{\mathbf{u}_1, \cdots, \mathbf{u}_r\}$ is a basis for S and $\{\mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for S^{\perp} , thus

$$\alpha_1 = \cdots = \alpha_r = \alpha_{r+1} = \cdots = \alpha_n = 0$$

Thus, $\{\mathbf{u}_1, \cdots, \mathbf{u}_r, \mathbf{u}_{r+1}, \cdots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n .

Example: Revisit Solution Set of Ax=0



Back to Question on Expressing Solution Set

The complete solution is

$$\mathbf{x}_p + N(A) = \mathbf{x}_p + \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{n-r}\}$$

We use n - r vectors.

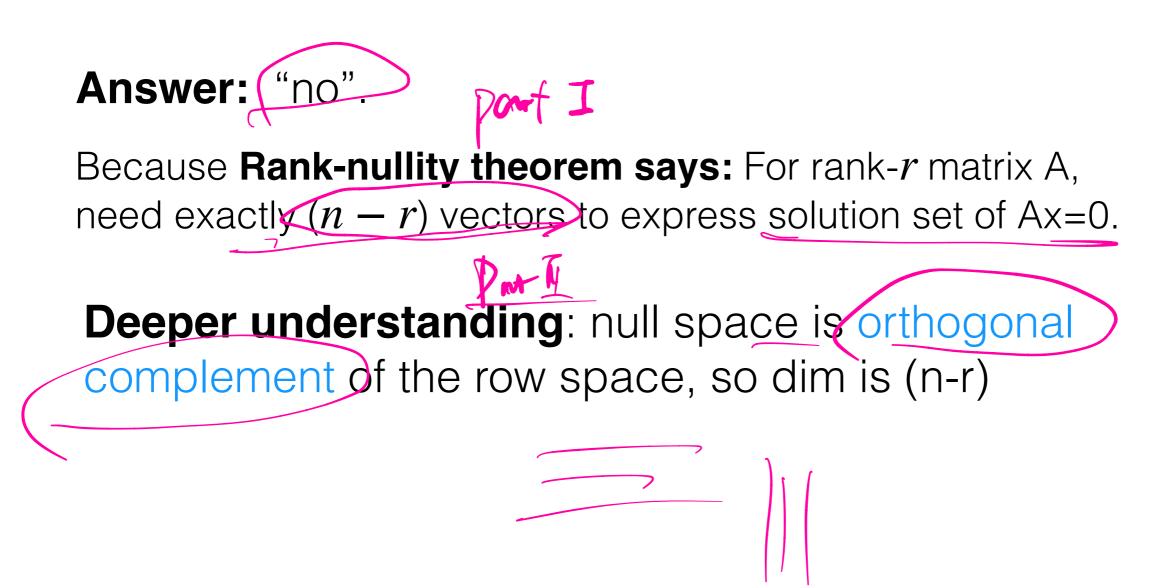
Question: Can we use fewer vectors to express N(A)?

Back to Question on Expressing Solution Set

The complete solution is $\mathbf{x}_p + N(A) = \mathbf{x}_p + C(M) = \mathbf{x}_p + \alpha_1 \mathbf{v}_1 + \ldots + \mathbf{v}_{n-r}.$

We use n - r vectors.

Question: Can we use fewer vectors to express N(A)?



$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ A & & & \\ & &$$

Part IV Four Fundamental Subspaces

Strang's book Sec. 3.5

Mother A

MGY all Colum spare Pour; nul space N(A) = Rou(A) $C(A) = Row(A^{T})$ A) ren space 2

Left Null Space

Definition 15.3 (left null space) The left null space of a matrix A is defined as $N(A^{T})$.

Y

Think: What is this space?

Hint: using linear equations.

LC of Col

Definition 15.3 (left null space) The left null space of a matrix A is defined as N(A^{\top}).

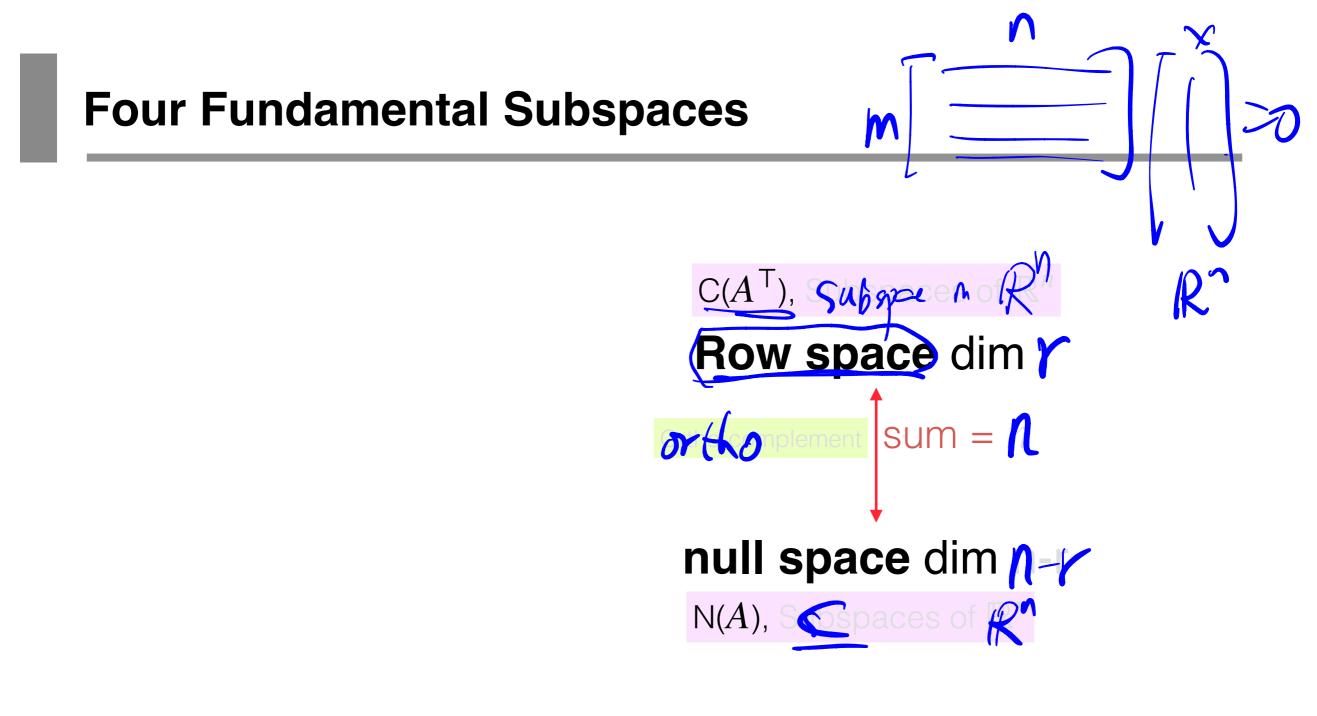
Think: What is this space?

Hint: using linear equations.

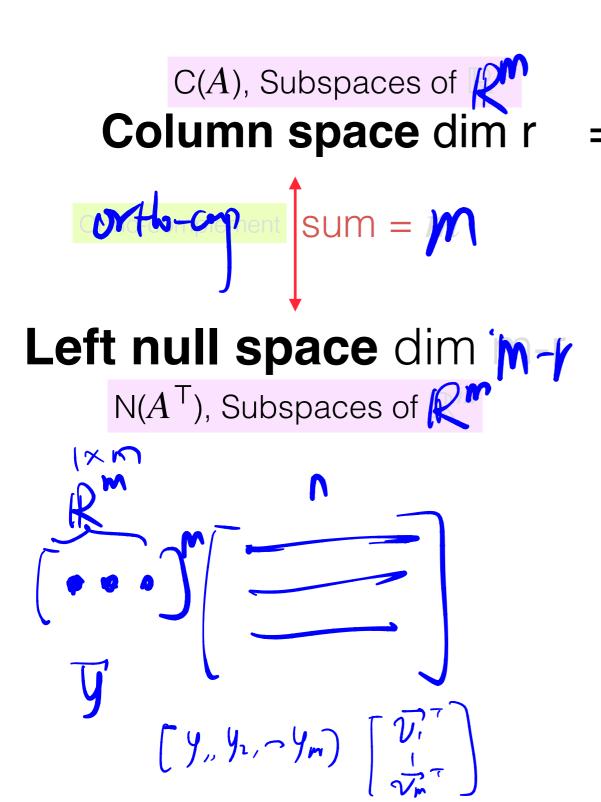
Corollary 15.2 Suppose A has *m* rows. Then $J_m(C(A)) \neq m(N(A^T)) = m.$

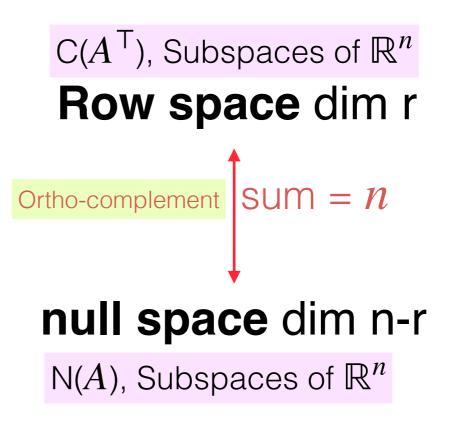
Row space dim + Left null space dim = m.

Proof: Consider $B = A^{\top}$



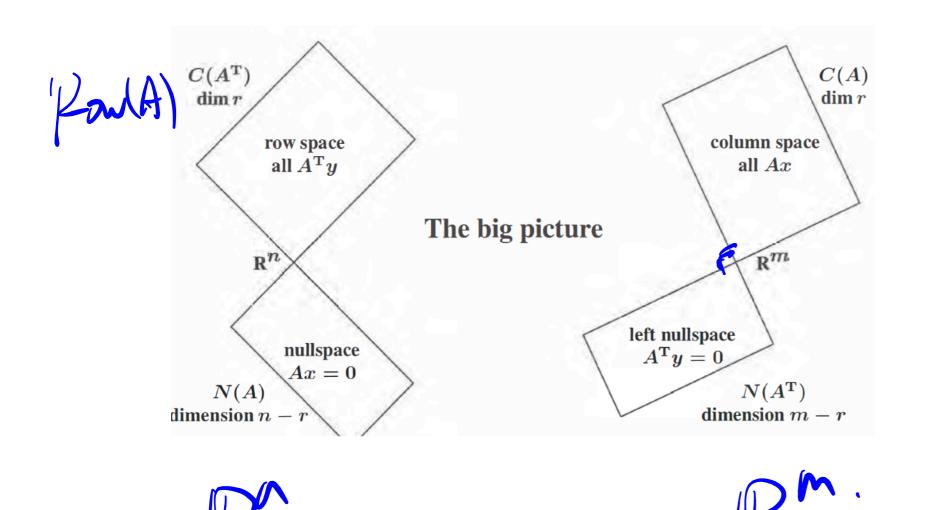
Four Fundamental Subspaces





Fundamental Theorem of Linear Algebra

Theorem 15.3 (Fundamental Theorem of Linear Algebra) Suppose $A \in \mathbb{R}^{m \times n}$. Then: (1) $N(A) = \operatorname{Kol}(A)^{\perp}$, $\dim(N(A)) = n - \operatorname{rank}(A)$. (2) $N(A^{\top}) = \sum C(A)^{\perp}$, $\dim(N(A^{\top})) = m - \operatorname{rank}(A)$.



Summary of Solving Rectangular Linear Systems

What have we learned, for solving Ax=b? 1) For any linear system, can transform to RREF. Lec 12 2) From RREF, can write the solution set as $\chi_{\rho} + (V(A))$ <u>Lec 13</u> 3) The solution set Connot be simplified (use < (n-n) vec) ronk-nullity theorem Lec 14-15 A new view for solving Ax=0:) Lec 15 orthe complenet of Row(A) It is just finding

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

Four Fundamental Subspaces

Detailed summary:

1. Full rank

—Full row rank and full column rank ==> # of solutions

2. Nullity

- -Nullity = dimension of null space.
- —Rank-Nullity theorem: Nullity + rank = n.

3. Orthogonality

-Orthogonal complement V^{\perp} has dimension n - dim(V)

4. Four fundamental subspaces

- -null space = (row space)[⊥]; left null space = (ownspace)[⊥].
- $-\dim: m-r, n-r.$

Mid-term exam: Time: Nov 5, Sunday, 16:30-18:30. Place: Stadium.

Range: Lec 1-14.