Lecture 16

Least Squares Problem I

Instructor: Ruoyu Sun

Today: Least Squares Problem

- 1. Motivation: Linear Regression
- 2. Least Squares Problem
- 3. Solving Least Squares Problem
	- Strang's book: Sec

After today's lecture, you shall be able to:

- 1. Model certain real-world problems as linear regression problems
- 2. Tell the relation/difference of least squares and linear equations
- 3. Solve a least squares problem

Roadmap of Linear Systems

Solving linear systems (Lec 3-15) **Segment 1**

[Lec 16-20]: Three relatively independent parts: —Solving least squares problem (Lect 16,17) **Segment 2**

—Determinant. [Important tool!] (Lec 18)

—Linear transformation. [Advanced math perspective of matrix] (Lec 19,20)

Segment 3 Lec 21-27: Eigenvalues and related.

- —Eigenvalues. Lec 21-24
- —**Singular values**. Lec 25-26

—Quadratic forms. Lec 27.

Part I Motivation: Linear Regression

Motivation: Salary Prediction

Example (Salary prediction)

Suppose I'm the Boss of Rocket. Now I want to hire a new guy Tom.

How much shall I pay Tom?

Motivation: Salary Prediction

Linear model:

Assume Salary = $a \cdot$ Score + $b \cdot$ Assist.

Equations:

Is there a solution?

How to Proceed?

Is there a solution?

Business is not math class. You cannot say "no solution".

You have to find a solution. So… what to do?

Find an approximate solution!

 $Find w s.t. _$

But….

Find an approximate solution!

Find *w* s.t. __∥*Ax* − *b*∥ is small______

Still not clear enough: how small is small?

Find an approximate solution!

Find *w* s.t. __∥*Ax* − *b*∥ is small______

Still not clear enough: how small is small?

One trial: Set the goal as find *x* s.t. $||Ax - b||^2 \le 10^{-8}$

Issue: Anyways, Boss needs a solution.

Method: Make error as small as possible.

Minimization Problem

Method: Make error as small as possible.

Find *x* s.t. $||Ax - b||$ is the smallest among all.

More precisely, find x^* such that

Equivalently, solve the following problem:

Part II Least Squares: Definition

Definition Row Interpretation: Linear Regression Column Interpretation: Residual

What if a linear system $A\mathbf{x} = \mathbf{b}$ has no solution? One method: Find the best "approximation"!

Definition (Least Squares Problem) G iven a matrix $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m \times 1}$, the least squares problem is min **x**∈ℝ*n*×¹ $||A**x** − **b**||$ (*)

Remark: $\|\cdot\|$ is the ℓ_2 (**Euclidean**) norm between vectors (lecture 2) ∥**y**∥ is a **solution** of the problem (*) (or "the least square problem") if

$$
||Ay - b|| \le ||Ax - b||
$$
 for any **x**

Do not call this **y** a "solution of the linear system A **x** = \mathbf{b} "!

Least Squares

Question min ∥*A***x** − **b**∥ **x** Are the following problems equivalent? $\text{min } ||A\mathbf{x} - \mathbf{b}||^2$ **x** Rewrite what they mean: Find their relation:

Least Squares: Row Interpretation

 $\mathsf{Suppose}\ \tilde{\mathbf{a}}_1^\top ,\dots \tilde{\mathbf{a}}_m^\top$ are rows of A

$$
||A\mathbf{x} - \mathbf{b}||^2 = (\tilde{\mathbf{a}}_1^{\mathsf{T}}\mathbf{x} - b_1)^2 + \dots + (\tilde{\mathbf{a}}_n^{\mathsf{T}}\mathbf{x} - b_n)^2
$$

Remark: The least square objective is a sum of squares of residual components

Remark: so least squares minimizes sum of squares of residuals

- solving A **x** = **b** is making all residuals zero
- **•** least squares attempts to make them all small

Application of Least Squares: Linear Regression

Step 1: (estimate the value of "score" and "assist")

Compute **x** s.t. the $\sum_i (b_i - \mathbf{x}^\top \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$ is the smallest (among all possible choices of **x**), where $A = \begin{bmatrix} 25 & 8 \end{bmatrix}$, **x** *m* ∑ *i*=1 $(b_i - \mathbf{x}^\top \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$ **x**), where $A =$ 16 10 25 8 18 3 $\mathbf{b} =$ 35 43 16 Denote the solution as **y** .

Step 2: (estimate salary) Compute $\mathbf{y}^{\mathsf{T}}\mathbf{a}_{\text{Tom}}$.

Consider
$$
\langle \mathbf{x}, \mathbf{a}_i \rangle + r_i = b_i, \quad i = 1, 2, ..., m
$$
.

Task (informal):

Compute *x* s.t. the approximation error $r_i \triangleq b_i - \mathbf{x}^\top \mathbf{a}_i$, $\forall i$ are "small".

Task (informal):

Compute **x** s.t. the $\sum (b_i - \mathbf{x}^\top \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$ is the smallest (among all possible choices of **x**) *m* ∑ *i*=1 $(b_i - \mathbf{x}^\top \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$

This problem is called linear regression. The first model in machine learning.

Linear Regression is Fundamental

Machine learning:

Linear regression is the first model.

Deep learning (深度学习):

Linear regression is the foundation.

Statistics:

Will spend many lectures on it.

Ecometrics (计量经济学):

Will spend many lectures on it.

…

Don't be too surprised (and bored) if you see it again next year.

Over-Determined Systems (Tall Matrix)

Proposition 13.1 (Column space and Solvability)

 A **x** = **b** has a solution iff $\mathbf{b} \in C(A)$

No solution happens quite often for over-determined linear system

In real-world applications, for "tall" system A **x** = **b**, it is likely that $\mathbf{b} \notin C(A)$

Definition (Residual)

A residual of a linear system A **x** = **b** is r (**x**) = A **x** - **b**

LS problem: find an **x** that makes the residual as small as possible, if not 0

$$
||Ax - b|| = ||x1a1 + x2a2 + \cdots + xnan - b||
$$

Remark: The least squares problem is to find a linear combination of columns of *A* that is closest to **b**

Remark: If y is a solution of least squares problem, then:

the vector A y is closest to b among all linear combinations of columns of A .

Part III Solving Least Squares

Find $x \in \mathbb{R}$ s.t. $(x - 1)^2$ is minimized.

Namely, find $y \in \mathbb{R}$ s.t.

Answer: $y = 1$.

Verify:

Example of e_1, e_2

$$
\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|
$$

Let's start from a simple example.

 $a_1 = e_1, a_2 = e_2.$

Exercise: How to solve it? Try both geometry and algebra.

Find
$$
x_1, x_2, s.t. ||x_1(\begin{array}{c} 1 \\ 0 \end{array}) + x_2(\begin{array}{c} 0 \\ 1 \end{array}) - (\begin{array}{c} b_1 \\ b_2 \end{array})||^2 = f(x)
$$
 is smallest.
Find $y_1, y_2, s.t. f(x_1, x_2) \ge f(x_1, y_2)$ $\forall x_1, x_1 \in R$.

Solution: Algebra Method

________ (easy/hard) to extend

Solution: Geometry Method

Find $x \in \mathbb{R}^2$ s.t. $||x_1e_1 + x_2e_2 - b||$ is the smallest, i.e. Find $y \in \mathbb{R}^2$ s.t. $||y_1e_1 + y_2e_2 - b|| \le ||x_1e_1 + x_2e_2 - b||$, $\forall x$. (*)

Geometry: Draw ___, ___, ____, Translate (*) to geometry.

Claim: Suppose *p* satisfies _______________________, then $||b - p|| \le ||b - u||$, $∀u ∈ span(e_1, e_2)$. **Proof (by geometry):**

$$
\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|
$$

Let's make it slightly more complicated. What if $n = 2$ and $\mathbf{a}_1, \mathbf{a}_2$ are two arbitrary vectors? **Exercise**: How to solve it? Try geometry.

Claim: Suppose *p* satisfies _______________________, then $||b - p|| \le ||b - u||$, $∀u ∈ span(a_1, a_2)$.

$$
\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|
$$

Let's consider the general case. **Exercise**: How to solve it? Try geometry.

Geometry problem:

Find a point in _________, such that ____________ to **b** is the smallest.

Claim: Suppose p satisfies _____________________________, then $||b - p|| \le ||b - u||$, $∀u ∈ span(a_1, a_2)$.

Projection: Lemma and Definition

Lemma 16.1 (Orthogonal Projection)
Suppose *S* is a subspace of
$$
\mathbb{R}^m
$$
. Suppose $\mathbf{p} \in S$, then
(1) $\|\mathbf{b} - \mathbf{p}\| \ge \|\mathbf{b} - \mathbf{z}\|$, $\forall \mathbf{z} \in S$
 \Leftrightarrow
(2) $\mathbf{b} - \mathbf{p} \perp S$.

Definition 16.1 Suppose S is a subspace of \mathbb{R}^m . Suppose $\mathbf{p} \in S$ and $\mathbf{b} - \mathbf{p} \perp S$, then we say \mathbf{p} is the projection of \mathbf{b} onto S.

Proof (Skipped)

We skip the proof of Lemma 16.1. We reserve a blank page if you want space to prove it. Lemma 16. says, just need to find $p \in S$ such that $\mathbf{b} - \mathbf{p} \perp S$.

In our problem, $S =$ _________________

Recall: find **y** s.t. $||Ay - b|| \le ||Ax - b||$ for any **x**

 \Leftrightarrow Find $p \in C(A)$ s.t. $||p - b|| \le ||u - b||$ for any $u \in C(A)$

Just need to find $y \in \mathbb{R}^{n \times 1}$ such that $\mathbf{b} - \mathbf{y} \perp \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n \times 1}\}\$

⇔

⇔

Math problem. What $z \in \mathbb{R}^n$ satisfies $z \perp x$, $\forall x \in \mathbb{R}^n$? Lemma If $z \in \mathbb{R}^n$ satisfies $z \perp x$, $\forall x \in \mathbb{R}^n$, then _______. Proof:

Another View (Orthogonal Complement):

Lemma 2

Lemma 16.2 Suppose $S = C(A)$ is the column space of matrix A. Then (1) **b** − *A***y** ⊥ *S* \leftarrow (2) *A*⊤*A***y** = *A*⊤**b**

 $Recall: C(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^{n \times 1}\}\$

The least squares solution can be found by solving a linear system!

Theorem 16.1 (LS solution and normal equation)

Consider a least squares problem. The following statements are equivalent:

1. **y** minimizes $||Ax - b||$

2. $A^{\mathsf{T}} A \mathbf{y} = A^{\mathsf{T}} \mathbf{b}$

Proof: Directly combine two lemmas.

Solving Least Squares: Characterization

The least squares solution can be found by solving a linear system!

The following statements are equivalent: Theorem 16.1 (LS solution and normal equation)

1. **y** minimizes $||Ax - b||$

 $2. A[⊤]A**y** = A[⊤]**b**$ This is an *n* × *n* linear system!

Remark: The linear system $A^T A y = A^T b$ is called the **normal equation**

Solving Least Squares: Solution

Proposition (Existence)

The linear system $A^T A y = A^T b$ has at least one solution.

Proof:

Hint: Use the following fact: "Bx=z" is solvable iff $z \in C(B)$. Corollary (Characterization)

Suppose A has linearly independent columns (i.e., has full column rank).

Then solution of the least square problem $\min_{n \in \mathbb{N}} ||Ax - b||$ is **x**∈ℝ*n*×¹ ∥*A***x** − **b**∥

 ${\bf y} = (A^{\top}A)^{-1}A^{\top} {\bf b}$

Remark: A has linearly independent columns \Longleftrightarrow rank(A) = *n*

Proof: Step 1: show the following lemma.

Lemma: If *A* has full column rank, then $A^T A$ is invertible.

Step 2:

Reading: An Alternative Proof via Calculus

- **Derivation via calculus** $(1) == > (2)$
	- \blacktriangleright define

$$
f(x) = ||Ax - b||^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_{j} - b_{i} \right)^{2}
$$

► solution \hat{x} satisfies

$$
\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n
$$

- ightharpoonup taking partial derivatives we get $\nabla f(x)_k = (2A^T(Ax b))_k$
- in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- ► so \hat{x} satisfies normal equations $(A^T A)\hat{x} = A^T b$
- and therefore $\hat{x} = (A^T A)^{-1} A^T b$

(Source: Stephen Boyd's book)

Reading: An Alternative Proof via Calculus

Direct verification $(2) == > (1)$

$$
\blacktriangleright \det \hat{x} = (A^T A)^{-1} A^T b, \text{ so } A^T (A\hat{x} - b) = 0
$$

 \triangleright for any *n*-vector *x* we have

$$
||Ax - b||2 = ||(Ax - A\hat{x}) + (A\hat{x} - b)||2
$$

=
$$
||A(x - \hat{x})||2 + ||A\hat{x} - b||2 + 2(A(x - \hat{x}))T (A\hat{x} - b)
$$

=
$$
||A(x - \hat{x})||2 + ||A\hat{x} - b||2 + 2(x - \hat{x})T AT (A\hat{x} - b)
$$

=
$$
||A(x - \hat{x})||2 + ||A\hat{x} - b||2
$$

► so for any x, $||Ax - b||^2 \ge ||A\hat{x} - b||^2$

if equality holds, $A(x - \hat{x}) = 0$, which implies $x = \hat{x}$ since columns of A are linearly independent

(Source: Stephen Boyd's book)

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

We have studied least squares and analyzed it solution

Detailed summary:

1. What can we do when a linear system has no solutions?

Solve least squares!

2. Applications: linear regression

e.g. predict salary

3. Characterization of its solution and uniqueness condition

Solution satisfies orthogonality condition.

Solution satisfies the Normal equation.

Full-column-rank case: Unique expression $\mathbf{y} = (A^\top A)^{-1}A^\top \mathbf{b}$