Lecture 16

Least Squares Problem I

Instructor: Ruoyu Sun

Today: Least Squares Problem

- 1. Motivation: Linear Regression
- 2. Least Squares Problem
- 3. Solving Least Squares Problem
 - Strang's book: Sec

After today's lecture, you shall be able to:

- 1. Model certain real-world problems as linear regression problems
- 2. Tell the relation/difference of least squares and linear equations
- 3. Solve a least squares problem

Roadmap of Linear Systems

Segment 1 Solving linear systems (Lec 3-15)

Segment 2 [Lec 16-20]: Three relatively independent parts:

—Solving least squares problem (Lect 16,17)

—Determinant. [Important tool!] (Lec 18)

-Linear transformation. [Advanced math perspective of matrix] (Lec 19,20)

Segment 3 Lec 21-27: Eigenvalues and related.

- -Eigenvalues. Lec 21-24
- -Singular values. Lec 25-26

-Quadratic forms. Lec 27.

Part I Motivation: Linear Regression

Motivation: Salary Prediction

Example (Salary prediction)

	Score	Assist	Salary (million dollars)
Paul	16	10	35
Harden	25	8	45
Capela	18	3	15
Tom	12	14	???

Suppose I'm the Boss of Rocket. Now I want to hire a new guy Tom.

How much shall I pay Tom?

Motivation: Salary Prediction

	Score	Assist	Salary (million
Paul	16	10	35
Harden	25	8	45
Capela	18	3	15
Tom	12	14	???

Linear model:

Assume Salary = $a \cdot \text{Score} + b \cdot \text{Assist}$.

Equations:

Is there a solution?

How to Proceed?

Is there a solution?

Business is not math class. You cannot say "no solution".

You have to find a solution. So... what to do?

Find an approximate solution!

Find *w* s.t. _____

But....

Find an approximate solution!

Find *w* s.t. ||Ax - b|| is small_____

Still not clear enough: how small is small?

Find an approximate solution!

Find *w* s.t. ||Ax - b|| is small_____

Still not clear enough: how small is small?

One trial: Set the goal as find x s.t. $||Ax - b||^2 \le 10^{-8}$

Issue: Anyways, Boss needs a solution.

Method: Make error as small as possible.

Minimization Problem

Method: Make error as small as possible.

Find x s.t. ||Ax - b|| is the smallest among all.

More precisely, find x^* such that

 $||Ax^* - b|| \le ||Ax - b||, \quad \forall x.$

Equivalently, solve the following problem:

 $\min_{w} ||Aw - b||^2$

Part II Least Squares: Definition

Definition Row Interpretation: Linear Regression Column Interpretation: Residual What if a linear system $A\mathbf{x} = \mathbf{b}$ has no solution? One method: Find the best "approximation"!

Definition (Least Squares Problem) Given a matrix $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m \times 1}$, the least squares problem is $\min_{\mathbf{x} \in \mathbb{R}^{n \times 1}} \|A\mathbf{x} - \mathbf{b}\| \quad (*)$

Remark: $\|\cdot\|$ is the ℓ_2 (Euclidean) norm between vectors (lecture 2) $\|\mathbf{y}\|$ is a solution of the problem (*) (or "the least square problem") if

$$||A\mathbf{y} - \mathbf{b}|| \le ||A\mathbf{x} - \mathbf{b}||$$
 for any \mathbf{x}

Do not call this **y** a "solution of the linear system $A\mathbf{x} = \mathbf{b}$ "!

Least Squares

Question Are the following problems equivalent? $\min \|A\mathbf{x} - \mathbf{b}\|^2$ $\min \|A\mathbf{x} - \mathbf{b}\|$ Х X Rewrite what they mean: Find their relation:

Least Squares: Row Interpretation

Suppose $\tilde{\mathbf{a}}_1^{\mathsf{T}}, \dots \tilde{\mathbf{a}}_m^{\mathsf{T}}$ are rows of A

$$\|A\mathbf{x} - \mathbf{b}\|^2 = (\tilde{\mathbf{a}}_1^{\mathsf{T}}\mathbf{x} - b_1)^2 + \dots + (\tilde{\mathbf{a}}_n^{\mathsf{T}}\mathbf{x} - b_n)^2$$

Remark: The least square objective is a sum of squares of residual components

Remark: so least squares minimizes sum of squares of residuals

- solving $A\mathbf{x} = \mathbf{b}$ is making all residuals zero
- least squares attempts to make them all small

Application of Least Squares: Linear Regression

Examples (Salary prediction)						
	Score	Assist	Salary (million dollars)			
Paul	16	10	35			
Harden	25	8	43			
Capela	18	3	16			
Tom	12	14	???	How much shall I pay Tom?		

Step 1: (estimate the value of "score" and "assist")

Compute \mathbf{x} s.t. the $\sum_{i=1}^{m} (b_i - \mathbf{x}^{\mathsf{T}} \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$ is the smallest (among all possible choices of \mathbf{x}), where $A = \begin{bmatrix} 16 & 10 \\ 25 & 8 \\ 18 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 35 \\ 43 \\ 16 \end{bmatrix}$ Denote the solution as y.

Step 2: (estimate salary) Compute $\mathbf{y}^{\mathsf{T}}\mathbf{a}_{\mathsf{Tom}}$.

Consider
$$\langle \mathbf{x}, \mathbf{a}_i \rangle + r_i = b_i, \quad i = 1, 2, ..., m$$
.

Task (informal):

Compute x s.t. the approximation error $r_i \triangleq b_i - \mathbf{x}^{\mathsf{T}} \mathbf{a}_i, \forall i$ are "small".

Task (informal):

Compute **x** s.t. the $\sum_{i=1}^{m} (b_i - \mathbf{x}^T \mathbf{a}_i)^2 = ||A\mathbf{x} - \mathbf{b}||^2$ is the smallest (among all possible choices of **x**)

This problem is called linear regression. The first model in machine learning.

Linear Regression is Fundamental

Machine learning:

Linear regression is the first model.

Deep learning (深度学习):

Linear regression is the foundation.

Statistics:

Will spend many lectures on it.

Ecometrics (计量经济学):

Will spend many lectures on it.

Don't be too surprised (and bored) if you see it again next year.

Over-Determined Systems (Tall Matrix)

Proposition 13.1 (Column space and Solvability)

 $A\mathbf{x} = \mathbf{b}$ has a solution iff $\mathbf{b} \in C(A)$

No solution happens quite often for over-determined linear system

In real-world applications, for "tall" system $A\mathbf{x} = \mathbf{b}$, it is likely that $\mathbf{b} \notin C(A)$

Definition (Residual)

A residual of a linear system $A\mathbf{x} = \mathbf{b}$ is $r(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$

LS problem: find an **x** that makes the residual as small as possible, if not 0

$$||A\mathbf{x} - \mathbf{b}|| = ||x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}||$$

Remark: The least squares problem is to find a linear combination of columns of A that is closest to **b**

Remark: If y is a solution of least squares problem, then:

the vector Ay is closest to b among all linear combinations of columns of A.

Part III Solving Least Squares

Find $x \in \mathbb{R}$ s.t. $(x - 1)^2$ is minimized.

Namely, find $y \in \mathbb{R}$ s.t. $(y-1)^2 \le (x-1)^2$ for a

Answer: y = 1.

Verify:

Example of e_1, e_2

$$\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|$$

Let's start from a simple example.

 $\mathbf{a}_1 = \mathbf{e}_1, \mathbf{a}_2 = \mathbf{e}_2.$

Exercise: How to solve it? Try both geometry and algebra.

$$F_{nd} X_{i}, X_{2}, s.t. \| X_{i} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + X_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \|^{2} = f(X) \quad \text{is smallest}.$$

Find $Y_{i}, Y_{2}, s.t. f(X_{i}, X_{2}) \ge f(Y_{i}, Y_{2}) \quad \forall X_{i}, X_{2} \in \mathbb{R}.$

Hint: Algebre or Geometry.

Solution: Algebra Method

(easy/hard) to extend

Solution: Geometry Method

Find $x \in \mathbb{R}^2$ s.t. $||x_1e_1 + x_2e_2 - b||$ is the smallest, i.e. Find $y \in \mathbb{R}^2$ s.t. $||y_1e_1 + y_2e_2 - b|| \le ||x_1e_1 + x_2e_2 - b||, \forall x$. (*)

Geometry: Draw ____, ____, ____; Translate (*) to geometry.

Claim: Suppose *p* satisfies ______, then $\|b - p\| \le \|b - u\|, \quad \forall u \in \text{span}(e_1, e_2).$ **Proof (by geometry)**:

$$\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|$$

Let's make it slightly more complicated. What if n = 2 and \mathbf{a}_1 , \mathbf{a}_2 are two arbitrary vectors? Exercise: How to solve it? Try geometry.

Claim: Suppose *p* satisfies _____, then $\|b - p\| \le \|b - u\|, \quad \forall u \in \text{span}(a_1, a_2).$

$$\min \|A\mathbf{x} - \mathbf{b}\| = \|x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n - \mathbf{b}\|$$

Let's consider the general case.

Exercise: How to solve it? Try geometry.

Geometry problem:

Find a point in _____, such that _____ to **b** is the smallest.

Claim: Suppose *p* satisfies _____, then $\|b - p\| \le \|b - u\|, \quad \forall u \in \text{span}(a_1, a_2).$

Projection: Lemma and Definition

Lemma 16.1 (Orthogonal Projection)
Suppose S is a subspace of
$$\mathbb{R}^m$$
. Suppose $\mathbf{p} \in S$, then
(1) $\|\mathbf{b} - \mathbf{p}\| \ge \|\mathbf{b} - \mathbf{z}\|, \forall \mathbf{z} \in S$
 \overleftrightarrow
(2) $\mathbf{b} - \mathbf{p} \perp S$.

Definition 16.1 Suppose S is a subspace of \mathbb{R}^m . Suppose $\mathbf{p} \in S$ and $\mathbf{b} - \mathbf{p} \perp S$, then we say \mathbf{p} is the projection of \mathbf{b} onto S.

Proof (Skipped)

We skip the proof of Lemma 16.1. We reserve a blank page if you want space to prove it. Lemma 16. says, just need to find $p \in S$ such that $\mathbf{b} - \mathbf{p} \perp S$.

In our problem, $S = _$

Recall: find **y** s.t. $||A\mathbf{y} - \mathbf{b}|| \le ||A\mathbf{x} - \mathbf{b}||$ for any **x**

 $\Leftrightarrow \quad \mathsf{Find} \ \mathbf{p} \in \mathsf{C}(A) \ \mathsf{s.t.} \ \|\mathbf{p} - \mathbf{b}\| \le \|\mathbf{u} - \mathbf{b}\| \ \mathsf{for} \ \mathsf{any} \ \mathbf{u} \in \mathsf{C}(A)$

Just need to find $\mathbf{y} \in \mathbb{R}^{n \times 1}$ such that $\mathbf{b} - \mathbf{y} \perp \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n \times 1}\}$

Small Result Used in Last Page

Math problem. What $z \in \mathbb{R}^n$ satisfies $z \perp x$, $\forall x \in \mathbb{R}^n$? Lemma If $z \in \mathbb{R}^n$ satisfies $z \perp x$, $\forall x \in \mathbb{R}^n$, then _____. Proof:

Another View (Orthogonal Complement):

Lemma 2

Lemma 16.2 Suppose S = C(A) is the column space of matrix A. Then (1) $\mathbf{b} - A\mathbf{y} \perp S$ \iff (2) $A^{\mathsf{T}}A\mathbf{y} = A^{\mathsf{T}}\mathbf{b}$

Recall: $C(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^{n \times 1}\}$

The least squares solution can be found by solving a linear system!

Theorem 16.1 (LS solution and normal equation)

Consider a least squares problem. The following statements are equivalent:

1. **y** minimizes $||A\mathbf{x} - \mathbf{b}||$

 $\mathbf{2}.A^{\mathsf{T}}A\mathbf{y} = A^{\mathsf{T}}\mathbf{b}$

Proof: Directly combine two lemmas.

Solving Least Squares: Characterization

The least squares solution can be found by solving a linear system!

Theorem 16.1 (LS solution and normal equation) The following statements are equivalent:

1. **y** minimizes $||A\mathbf{x} - \mathbf{b}||$

2. $A^{\mathsf{T}}A\mathbf{y} = A^{\mathsf{T}}\mathbf{b}$ **This is an** $n \times n$ **linear system!**

Remark: The linear system $A^{\top}A\mathbf{y} = A^{\top}\mathbf{b}$ is called the normal equation

Solving Least Squares: Solution

Proposition (Existence)

The linear system $A^{\top}A\mathbf{y} = A^{\top}\mathbf{b}$ has at least one solution.

Proof:

Hint: Use the following fact: "Bx=z" is solvable iff $z \in C(B)$. **Corollary** (Characterization)

Suppose A has linearly independent columns (i.e., has full column rank).

Then solution of the least square problem $\min_{\mathbf{x} \in \mathbb{R}^{n \times 1}} ||A\mathbf{x} - \mathbf{b}||$ is

 $\mathbf{y} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b}$

Remark: A has linearly independent columns \iff rank(A) = n

Proof: Step 1: show the following lemma.

Lemma: If A has full column rank, then $A^{\top}A$ is invertible.

Step 2:

Reading: An Alternative Proof via Calculus

- (1) ==> (2) Derivation via calculus
 - define

$$f(x) = \|Ax - b\|^2 = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij}x_j - b_i\right)^2$$

• solution \hat{x} satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get $\nabla f(x)_k = (2A^T(Ax b))_k$
- in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- ► so \hat{x} satisfies *normal equations* $(A^T A)\hat{x} = A^T b$
- and therefore $\hat{x} = (A^T A)^{-1} A^T b$

(Source: Stephen Boyd's book)

Reading: An Alternative Proof via Calculus

(2) ==> (1) Direct verification

• let
$$\hat{x} = (A^T A)^{-1} A^T b$$
, so $A^T (A \hat{x} - b) = 0$

▶ for any *n*-vector *x* we have

$$\begin{aligned} \|Ax - b\|^2 &= \|(Ax - A\hat{x}) + (A\hat{x} - b)\|^2 \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(A(x - \hat{x}))^T (A\hat{x} - b) \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(x - \hat{x})^T A^T (A\hat{x} - b) \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \end{aligned}$$

• so for any x, $||Ax - b||^2 \ge ||A\hat{x} - b||^2$

► if equality holds, A(x - x̂) = 0, which implies x = x̂ since columns of A are linearly independent

(Source: Stephen Boyd's book)

Summary Today (write Your Own)

One sentence summary:

Detailed summary:

Summary Today (of Instructor)

One sentence summary:

We have studied least squares and analyzed it solution

Detailed summary:

1. What can we do when a linear system has no solutions?

Solve least squares!

2. Applications: linear regression

e.g. predict salary

3. Characterization of its solution and uniqueness condition

Solution satisfies orthogonality condition.

Solution satisfies the Normal equation.

Full-column-rank case: Unique expression $\mathbf{y} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b}$