Lecture 17

Orthonormal Basis and Gram-Schmidt Process

Instructor: Ruoyu Sun

Main topic: Orthonormal basis

- 1. Orthonormal basis
- 2. Gram-Schmidt Process
- 3. Orthogonal matrix

Strang's book: mainly Sec 4.4; a bit of Sec 4.2

After the lecture, you should be able to

- 1. compute an orthonormal basis from a basis of a subspace
- 2. compute the projection onto a subspace
- 3. tell the definition and properties of orthogonal matrix

Review

Recall: Orthogonality and LS Solution

Definition in Lec 16 (Orthogonality)

Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal if $\mathbf{u}^\top \mathbf{v} = 0$. Denote $\mathbf{u} \perp \mathbf{v}$

Thm 16.2 and Lemma 16.1 together:

Consider a least squares problem. The following statements are equivalent:

- 1. y minimizes $||A\mathbf{x} \mathbf{b}||$
- 2. $\mathbf{b} A\mathbf{y} \perp S$.

 $\mathbf{3}. A^{\mathsf{T}} A \mathbf{y} = A^{\mathsf{T}} \mathbf{b}$

Part I Orthonormal Basis and Orthogonal Matrix

ULV: relation of two vectors Orthonormal Set of Vectors

From an Orthogonal Set to an Orthonormal Set

Question

Can you create an orthonormal set based on an orthogonal set?

Examples

Proof of Proposition 17.1

Proposition17.1 Let $S = \{v_1, ..., v_k\}$ be an orthogonal set. Then $v_1, ..., v_k$ are linearly independent.

Proof for k=2:
Remark: Urthogond: pairwse relator,
$$(v_1, v_1)$$

() Indep. all-vec (mutual) relator, $v_1 - v_1$.
Proof for k=2: $V_1 \perp V_2$, then $\alpha_1 \vee v_1 + \beta_2 \vee v_2 = 0$, \mathcal{O} iff $\sigma_1 = \sigma_2 = 0$?
Proof for k=2: $V_1 \perp V_2$, then $\alpha_1 \vee v_1 + \beta_2 \vee v_2 = 0$, \mathcal{O} iff $\sigma_1 = \sigma_2 = 0$?
Proof for k=2: $V_1 \perp V_2$, then $\alpha_1 \vee v_1 + \beta_2 \vee v_2 = 0$, \mathcal{O} iff $\sigma_1 = \sigma_2 = 0$?
Proof for k=2: $V_1 \perp V_2$, then $\alpha_1 \vee v_1 + \beta_2 \vee v_2 = 0$, \mathcal{O} iff $\sigma_1 = \sigma_2 = 0$?
Proof for k=2: $V_1 \perp V_2$, then $\alpha_1 \vee v_1 + \beta_2 \vee v_2 = 0$, \mathcal{O} iff $\sigma_1 = \sigma_2 = 0$?
Proof for k=2: $V_1 \perp V_2$, then $\mathcal{O}_1 = \sigma_1 \vee v_1 \vee v_2 = 0$.
Proof for k=2: $V_1 \perp V_2$, then $\mathcal{O}_1 = \sigma_2 \vee v_1 \vee v_2 = 0$.
Proof for k=2: $V_1 \perp V_2$, then $\mathcal{O}_2 \Rightarrow \alpha_1 = \sigma_2 = 0$. Thus $v_1 \vee v_2$ are indep. \square ,

Orthonormal Basis (标准正交基)

Definition 17.3 A set of vectors $S = \{v_1, ..., v_n\}$ is called an orthonormal basis of a linear space V if

- (1) *S* is an orthonormal set
- (2) Vectors in S form a basis of V.

Example

(1). Standard basis e_1 , e_n , e_n , e_1 , e_2 , e_3 , e_1 , e_3 , e_1 , e_1 , e_2 , e_1 , e_1 , e_2 , e_1 , e_1 , e_2 , e_1 , e_2 , e_1 , e_2 , e_1 , e_1 , e_1 , e_2 , e_1 , e_1 , e_1 , e_2 , e_1 , e_1 , e_2 , e_1 , e

Orthogonal Matrix

Definition 17.4 (Orthogonal Matrix) *Met orthogonal metrix* An orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ is a real square matrix whose columns form an orthonormal basis in \mathbb{R}^n $(Q = (q_1, -, q_2) \in \mathbb{R}^{n \times n})$

[based on what result of past lectures?]

Corollary: If the columns of $Q \in \mathbb{R}^{n \times n}$ form an orthonormal set of \mathbb{R}^n , then it is an orthogonal matrix. No need to check spin.

Orthogonal Matrix

/

Proof of Proposition 17.4 Corres ATA= In row

Proposition 17.2 (Orthogonal Matrix) A matrix $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if and only if

$$Q^{\top}Q = I_n.$$

Lemma Left inverse => inverse. If AB = In, then BA = In IJ and $A^{-'} = B$. Parf. (Long)_

Properties of Orthogonal Matrix

Property 17.1 (Orthogonal Matrix) If $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then (a) The column vectors of Q form an orthonormal basis. (b) $Q^{\top}Q = I_n$. (c) $Q^{-1} = Q^{\top}$ ($QQ^{\top} = I_n$) (d) $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$. [inner product preserving] $\langle \mathcal{A}, \mathcal{K} \rangle \mathcal{H}$ (e) $\|Q\mathbf{x}\| = \|\mathbf{x}\|$, [inter product preserving] $\langle \mathcal{A}, \mathcal{K} \rangle \mathcal{H}$

$$\langle Q \times, Q Y \rangle = (Q Y)^T Q X$$

 $= Y^T (Q^T Q) X = Y^T X = (Y, X)^T (Q^T Q) X = (Y, X)^T Y = (Y, Y)^T Y = (Y,$

These will be very useful for eigenvalues after Lec 21.

Part II Representation and Projection

Recall: Representing Element using Basis

Proposition (Unique Representation via Basis)
Let
$$\mathscr{U} = \{u_1, ..., u_n\}$$
 be a basis of a linear space V .
Any element $v \in V$ can be uniquely represented as a linear combination
of $u_1, ..., u_n$ [discussed in Lec 15]
Representation $v = \alpha_1(u_1) + ... + \alpha_n(u_n)$
We know such $\alpha_1, ..., \alpha_n$ exist But....how to compute?
Well, if $u_i \in \mathbb{R}^n$, just $\mathcal{D} V \mathcal{U}$ [hear α_i and $\mathcal{U} = \mathcal{T}$
Next, we show, if (u_i, s) is orthonor mel basis.
then express MUCH EASICR

Representing Element using Basis

Theorem 17.1 (Representation via Orthonormal Basis) Let $\mathcal{U} = \{u_1, ..., u_n\}$ be an <u>orthonormal basis</u> of \mathbb{R}^n . Any vector v can be represented as a linear combination $\left(v = \sum u_{i} u_{i}^{\top} v = \sum \langle v, u_{i} \rangle u_{i}\right)$ In the express $\vec{v} \in \mathcal{Z}_{i} \otimes \mathcal{R}_{i} (\star)$ Proof: Hint: Two ways. Via vector. $coeff \alpha_i = \mathcal{V}^T \mathcal{U}_{\bar{\mathcal{I}}}, \quad \hat{\mathcal{I}} = \mathcal{I}_{\mathcal{I}}, \quad \hat{\mathcal{I}}$ Via matrix. Method 1 (ver) We know that $\{\alpha_i\}$ exist size $\{M_i\}$'s form a bass, Method 1 (ver) We know that $\{\alpha_i\}$ exist size $\{M_i\}$'s form a bass, Mexto compute α_k 's. $M_k V = M_k (\sum_i \alpha_i M_i) = \sum_i \alpha_i M_k M_i = \alpha_k \|M_k\|^2 = \alpha_k$. Method 2. (motrox) $(\mathcal{A}) \Leftrightarrow \vec{v} = U \cdot \vec{z} \Rightarrow \vec{z} = U' \vec{v} \stackrel{Prop 17.1}{=} U' \vec{v} = \begin{bmatrix} u \cdot \vec{v} \\ \vdots \\ \vdots \end{bmatrix}$ Method 3. (motro). $\int \mathcal{L} u : u : \mathcal{V} = U \cdot U^{-1} \cdot \mathcal{V} = \mathcal{V}$.

Example of Representing using Orthonormal Basis

Application of
$$v = \sum_{i=1}^{n} \langle v, u_i \rangle u_i$$
.

Example
$$\left\{ \mathbf{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \frac{1}{\sqrt{14}} \begin{bmatrix} 2\\1\\-3 \end{bmatrix}, \mathbf{v}_3 = \frac{1}{\sqrt{42}} \begin{bmatrix} 4\\-5\\1 \end{bmatrix} \right\}$$

is an orthonormal basis of \mathbb{R}^3

For any $\mathbf{x} = [x, y, z]^T \in \mathbb{R}^3$, one has

$$\mathbf{x} = <\mathbf{x}, \mathbf{v}_1 > \mathbf{v}_1 + <\mathbf{x}, \mathbf{v}_2 > \mathbf{v}_2 + <\mathbf{x}, \mathbf{v}_3 > \mathbf{v}_3$$
$$= \frac{x + y + z}{\sqrt{3}} \mathbf{v}_1 + \frac{2x + y - 3z}{\sqrt{14}} \mathbf{v}_2 + \frac{4x - 5y + z}{\sqrt{42}} \mathbf{v}_3$$

Orthonormal Basis is Useful

Because

 Representing any vector by directly computing the "coordinates" —Useful in, e.g., computing LS-solution (forthcoming)
 Useful in eigen-theory (lecture 21)
 Central part

Projection

Definition 16.1 [Last lecture] Suppose S is a subspace of \mathbb{R}^m . Suppose $\mathbf{p} \in S$ and $\mathbf{b} - \mathbf{p} \perp S$, then we say \mathbf{p} is the projection of \mathbf{b} onto S.

Proposition 17.2

For any subspace $W \subset \mathbb{R}^n$, any vector $\mathbf{v} \in \mathbb{R}^n$, there is a <u>unique</u> vector $\mathbf{p} \in W$ such that $(v - p) \perp W$.

Representing Projection via Orthonormal Basis

Theorem 17.2 (Projection Representation) of you have addenand be Let W be a subspace of \mathbb{R}^n and suppose $S = \{w_1, \dots, w_k\}$ is an orthonormal basis of W. The projection of v onto W can be $p = \sum_{i=1}^{k} \langle w_{i}, v \rangle w_{i} = \sum_{i=1}^{k} W_{i} W_{i}^{T} V$ represented as i=1= ZZTV, Wax Z=[W,, -W] Ship point for general Co.R. V v - p $W \subseteq V$

Proof of Representing Projection

DIF you know orthonomal bass (of subspace). Then you know how to compute project

Part III Gram-Schmidt Process

Suppose $S = \{v_1, ..., v_k\}$ is set of linearly independent vectors in \mathbb{R}^n .

Is Finding Orthonormal Basis Simple?

Think: Can you use linear combination of columns to find orthonormal basis of a column space?

Exercise: Simple Case

$$Z = \begin{bmatrix} 2 & 4 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = [u_1, u_2].$$

Exercise: Find an orthonormal basis of span($\{u_1, u_2\}$)

Exercise: Simple Case

$$Z = \begin{bmatrix} 2 & 4 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = [u_1, u_2].$$

Exercise: Find an orthonormal basis of span($\{u_1, u_2\}$)

Compute Pro) 5 W2= span ({ U, U2 })? Orthonormal bass 4v, v27 of We $P_{1}^{ro}(u_{s}) = (U_{s}^{T}v_{1})v_{1} + (u_{s}^{T}v_{2})v_{s}$

-> Compute projectu prov orthonormal basis. of spon (u, u, y, U3) Compute orthonomal bas 2 Compute projection : Date Span (U., U.S. , U.S. spon { u, uz Us }, U4. Two sides of. some com Chicken & egg problem

Find orthonormal set U s.t. span $(U) = \text{span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

k=3 Case

Find orthonormal set U s.t. $span(U) = span(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

Back to the Question: k=2 Case

Find orthonormal set U s.t. span $(U) = \text{span}(\mathbf{u}_1, \mathbf{u}_2)$.

Steps:

Step 1: Find the orthonormal basis of span(\mathbf{u}_1).

Step 2: Find the second vector in the ortho-basis of span($\mathbf{u}_1, \mathbf{u}_2$).

Step 3: Find the 3rd vector in the ortho-basis of span($\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$)

This vector should be:

i) Orthogonal to $\mathbf{u}_1, \mathbf{u}_2$; ii) in span($\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$).

iii) Norm = 1.

Answer: Direction same as $u_3 - p_2$ where $p_2 = \operatorname{Proj}_{span(u_1, u_2)}(u_3) = \langle u_3, v_1 \rangle v_1 + \langle u_3, v_2 \rangle v_2$

> new vector minus projection to old directions

Gram-Schmidt Process

Suppose $S = \{u_1, ..., u_k\}$ is a set of linearly independent elements. Question: Based on *S*, can we find an orthonormal set *U* such that span(U) = span(S)?

Gram-Schmidt Process

Suppose $S = \{u_1, ..., u_k\}$ is a set of linearly independent vectors. **Question: Based on** *S*, **can we find an orthonormal set** *U* **such that** span(U) = span(S)?

Proposition 17.3 (Gram-Schmidt Process) The set $U = \{v_1, ..., v_k\}$ returned by the Gram-Schmidt process is an orthonormal basis of span(S).

Gram-Schmidt Process

Suppose $S = \{u_1, ..., u_k\}$ is a set of linearly independent elements. **Question: Based on** *S*, **can we find an orthonormal set** *U* **such that** span(U) = span(S)?

Proposition 17.3 (Gram-Schmidt Process)

The set $U = \{v_1, ..., v_k\}$ returned by the Gram-Schmidt process is an orthonormal basis of span(S).

Proof: Orthogonality: $V_{k+1} \perp Spa(\mathcal{W}_{n,-}, \mathcal{W}_{k})$ Norm: $|\mathcal{W}_{k}|| = 1$. Linearly Independence: Proposition 17.1 dim(span(S)) = k implies the result (Coro 17.1)

Gram-Schmidt Process Example

Gram-Schmidt Process Example

Gram-Schmidt Process Example

Example

Application of Orthonormal Basis: Compute Projection

Application of Orthonormal Basis: Solve LS-Problem

Lemma 16.1 (special case S = C(A))

Consider a least squares problem. The following statements are equivalent:

1. **y** minimizes $||A\mathbf{x} - \mathbf{b}||$

2. $\mathbf{b} - A\mathbf{y} \perp S$, i.e. $A\mathbf{y} = \operatorname{Proj}_{C(A)}(\mathbf{b})$;

Application question: How to compute LS-solution?

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

How many propositions do we have today? [4] How many theorems do we have today? What are they? Which is the most nontrivial one?

How many definitions do we have today? What are they?

Summary Today (of Instructor)

One sentence summary:

We have studied Orthonormal basis and Gram-Schmidt Process.

Detailed summary:

1) Orthonormal basis.

–Basis consisting of unit vectors that are orthogonal to each other.

—**Theorem 17.1**: Representation of vector by ortho-basis of whole space.

—<u>Theorem 17.2</u>: Representation of projection by ortho-space of a subspace.

2) Orthogonal matrix.

—Square matrix whose columns form a orthonormal basis of \mathbb{R}^n .

—Properties: $Q^{\top}Q = I$, keep the norm ||Qx|| = ||x||;

3) Gram-Schmidt process.

- -Goal: Construct orthonormal basis of a subspace, from a basis of the subspace.
- -Main trick: every new vector minus projection to old directions
- -Theoretical result: Gram-Schmidt process indeed returns an orthonormal basis.