Lecture 19

Determinant (II) an Linear Transformation (I)

Instructor: Ruoyu Sun

Main topic: Linear transformation

- 1. Properties of Determinant
- 2. Motivation of Linear Transformation
- 3. Two Definitions of Linear Transformation

Strang's book: Sec 8.1, 8.2

After the lecture, you should be able to

- 1. Use properties of determinants to compute determinants
- 2. Describe one application of linear transformation

3. Describe two definitions of linear transformation and explain why they are equivalent

Review

Definition of det(A)

Let $A \in \mathbb{R}^{n \times n}$ be a real square matrix Denote by $M_{ij} \in \mathbb{R}^{(n-1) \times (n-1)}$ a matrix formed by deleting the *i*-th row and *j*-th column of A

Definition 18.1 (Determinant) For a scalar $\alpha \in \mathbb{R}$, define det $(\alpha) = \alpha$. For any $A \in \mathbb{R}^{n \times n}$ with $n \ge 2$ define det $(A) = \sum_{j=1}^{n} \frac{(-1)^{1+j} \det(M_{1j})}{\cosh(\alpha_{1j})} a_{1j}$

This is a recursive definition! [递归方式的定义]

It is not hard to verify:

det() defined in Definition 18.1 satisfy the two desired properties.

Property P0 [transpose] $det(A^{\top}) = det(A)$

Property P1 [row/column-linear] The determinant is a linear function of each row and each column separately.

Property P2: **[row/column exchange]** Swapping columns or rows changes the sign of the determinant.

Part I Properties of det()

Determinant and Invertibility

Proposition 18.1

For any $A \in \mathbb{R}^{n \times n}$, $det(A) \neq 0$ iff A is invertible.

Geometry:

det(A) = volume of polytope

volume = 0 ⇔ ______ ⇔ _____

Equivalent Conditions for Invertibility ++

Theorem 15.2++ (Equivalent Conditions for Invertibility)

Let $A \in \mathbb{R}^{n \times n}$

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system $A\mathbf{x} = 0$ has a unique solution $\mathbf{x} = \mathbf{0}$
- 3. *A* is a product of elementary matrices
- 4. A has *n* pivots; or equivalently: rank(A) = n
- 5. The columns of A span \mathbb{R}^n
- 6. The columns of *A* are linearly independent
- 7. The columns of A form a basis of \mathbb{R}^n
- 8. $\dim(C(A)) = n$
- 9. $\dim(N(A)) = 0 \text{ or } N(A) = \{0\}$

10. $det(A) \neq 0$

Property P3 [Diagonal and triangular matrix]

If $A \in \mathbb{R}^{n \times n}$ is a triangular matrix with diagonal entries a_{11}, \dots, a_{nn} $det(A) = a_{11} \dots a_{nn}$

Property P4 [product]

For any two matrices $A, B \in \mathbb{R}^{n \times n}$, det(AB) = det(A)det(B)

Property P5 [inverse]

For any invertible $A \in \mathbb{R}^{n \times n}$, $det(A^{-1}) = \frac{1}{det(A)}$

Determinants of Type I Elementary Matrices

Type I: Add a Scaled Row to Another $(R_j \rightarrow \beta R_i + R_j)$

Determinants of Type I Elementary Matrices

Type I: Add a Scaled Row to Another $(R_j \rightarrow \beta R_i + R_j)$

$$\det(E_{\beta R_i + R_i}) = 1 \times 1 \times \dots \times 1 = 1$$

Property P4 [product]

For any two matrices $A, B \in \mathbb{R}^{n \times n}$, det(AB) = det(A)det(B)

Property P6 [multiply-add operation]

"Add a Scaled Row to Another" does not change the determinant.

Determinants of Three Elementary Row Operations

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{bmatrix} c & d \\ a & b \end{bmatrix} \qquad \text{olet } \times \\ \xrightarrow{\alpha R_{2}} \begin{bmatrix} a & b \\ \alpha c & \alpha d \end{bmatrix} \qquad \text{olet } \times \\ \xrightarrow{\beta R_{1} + R_{2}} \begin{bmatrix} a & b \\ \alpha c & \alpha d \end{bmatrix} \qquad \text{olet } \times \\ \begin{bmatrix} a & b \\ \beta c + c & \beta b + d \end{bmatrix} \qquad \text{olet } \times \\ \begin{bmatrix} a & b \\ \beta c + c & \beta b + d \end{bmatrix} \qquad \text{olet } \times \\ \begin{bmatrix} a & b \\ \beta c + c & \beta b + d \end{bmatrix} \qquad \text{olet } \times \\ \end{bmatrix}$$

Example

Two cases.

Case I: A is not invertible. Then AB is not invertible (exercise). Then det(A)det(B) = 0; and det(AB) = 0. The relation holds.

Case II: A is invertible.

Write $A = E_m \dots E_1$ where each E_i is an elementary matrix.

Lemma: If E is elementary matrix, then det(EK) = det(E)det(K) for any square matrix K.

$$det(AB) = det(E_m \cdots E_2 E_1 B)$$

= $det(E_m) \cdot det(E_{m-1} \cdots E_2 E_1 B)$
:
= $det(E_m) \cdot \cdots \cdot det(E_2) \cdot det(E_1) \cdot det(B)$
= $det(E_m \cdots E_2 E_1) \cdot det(B)$
= $det(A) \cdot det(B)$.

Determinants of Type I Elementary Matrices

Property P7 [block matrix]

If A is invertible, then
$$det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = det(A)det(D - CA^{-1}B)$$
.

Corollary: det(I + AB) = det(I + BA).

Part II Motivation of Linear Transformation

Zoom Photos

ANDROID » ANDROID APPLICATIONS

How to Zoom with the Camera on Android

Rotate Photos

How to rotate photos on iPhone

Yes, I know you can do it on the phones.

But...

How do the phones accomplish the job?

Zoom Shapes

Zoom Shapes

Level 1: I memorized: rotation can be achieved by the formula.

Level 2: I can prove: indeed this formula gives the rotation.

Level 3: I know how to derive this formula.

Part III Definition of Linear Transformation

Function (High School):

Chinese: 设两个非空数集X, Y,如果按照某种确定的对应关系f, 使得对于X中的任意一个数, 在Y中都有唯一确定的一个数f(x)与之对应, 那么就称f: X —> Y是一个函数。 **English**: Given two non-empty sets of numbers, X and Y, if there exists a certain definite correspondence relation f, such that for every number in set X, there is a uniquely determined number f(X) in set Y corresponding to it, then this relation f: X —> Y is called a function.

Mapping:

A mapping from a set *X* to a set *Y* assigns to each element of *X* exactly one element of *Y*.

The set *X* is called the domain of the mapping and the set *Y* is called the codomain of the mapping.

Remark: In math, many people use mapping and function interchangeably. Some people, e.g., Serge Lang, requires the codomain of a function to be a set of numbers.

Linear Function

Definition 19.1:

Suppose a_1, \ldots, a_n are given real numbers, $\mathbf{x} = (x_1, \ldots, x_n)$.

 $f(\mathbf{x}) = a_1 x_1 + \ldots + a_n x_n$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Linear Function

Definition 19.1:

Suppose a_1, \ldots, a_n are given real numbers, $\mathbf{x} = (x_1, \ldots, x_n)$.

 $f(\mathbf{x}) = a_1 x_1 + \ldots + a_n x_n$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Equivalent Definition:

Suppose $\mathbf{a} \in \mathbb{R}^n$ is a given real vector, $\mathbf{x} \in \mathbb{R}^n$.. $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{a} \rangle$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Recall: From Lecture 3:

Definition of linear equation:

Suppose $a_1, ..., a_n, b$ are given real numbers, $x_1, ..., x_n$ are variables. We say $a_1x_1 + ... + a_nx_n = b$ is a linear equation.

Linear Transformation (Euclidean space)

Definition 19.2:

Suppose $a_{i,j}$, i = 1, ..., m; j = 1, ..., n are given real numbers.

$$f(\mathbf{x}) = (a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{m1}x_1 + \dots + a_{mn}x_n)$$

is called a linear transformation (or linear map) from \mathbb{R}^n to \mathbb{R}^m .

Equivalent Definition (matrix form):

Suppose $A \in \mathbb{R}^{m \times n}$ is a given real matrix.

 $f(\mathbf{x}) = A\mathbf{x}$ is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Linear Function v.s. Linear Transformation

$$f(x) = a^{T}x \qquad (\text{inear function}, R^{n} \rightarrow R_{-}$$

$$f(x) = \begin{pmatrix} a_{i}^{T}x \\ a_{i}^{T}x \\ \vdots \\ a_{m}^{T}x \end{pmatrix} \qquad (\text{inear transformation}, R^{n} \rightarrow R^{m}$$

Recall: From Lecture 3: Definition of linear system of equations:

Suppose $a_{i,j}$, i = 1, ..., m; j = 1, ..., n are given real numbers.

We say $a_{11}x_1 + \ldots + a_{1n}x_n = b_1 \ldots, a_{m1}x_1 + \ldots + a_{mn}x_n = b_n$ is a system of linear equations.

Examples of Linear Transformations

Example

 $L: \mathbb{R}^2 \to \mathbb{R}^2$. Stretching or shrinking: $L((x, y)^T) = (\alpha x, \alpha y)^T (\alpha > 0)$

Examples of Linear Transformations

Example

Examples of Linear Transformations

Example

Let $L : \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined as:

$$L((x,y)^T) = x - y$$

Relation and Difference?

Linear transformation

Linear system of equations

$$f(\mathbf{x}) = A\mathbf{x}$$

 $A\mathbf{x} = \mathbf{b}$

Math form: similar Meaning: different

Mapping

Describes a relation

Equation

Built on mapping

e.g. President is a "relation" equation is "question

f(?) = Putin?

Relation and Difference?

	Linear transformation	Linear system of equations
Math form	$\mathbf{y} = A\mathbf{x}$	$A\mathbf{x} = \mathbf{b}$
Applications	Rotating images	Compute price; Compute references
Known	${f x}$; "description" of ${f y}$	A, b
Ultimate goa	Compute y	Compute x
Intermediate	obtain A	

Rotating is a "transformation".

Question 1: How do I know it's a linear transformation?

Question 2: How do I derive its expression?

Remark: I might ask you, what questions d

Part IV Another Definition of Linear Transformation

Linear Transformation ==> Superposition (叠加)

Property 19.1 [superposition property]

If *f* is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m , then $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

In words, transformed LC of vectors = LC of transformed vectors.

Examples:

Non-examples:

Linear Transformation ==> Superposition (叠加)

Property 19.1 [superposition property]

If *f* is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m , then $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

In words, transformed LC of vectors = LC of transformed vectors.

```
Corollary 19.1
If f is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m, then
f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}).
f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.
```

Superposition ==> Linear Transformation

Definition:

Suppose $f_i(\mathbf{x})$ is a function from \mathbb{R}^n to \mathbb{R} , i = 1, ..., m.

 $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$ is called a mapping from \mathbb{R}^n to \mathbb{R}^m .

Remark: Can also call it "vector function" (向量函数).

Theorem 19.1 If a mapping *f* from \mathbb{R}^n to \mathbb{R}^m satisfies $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, Then *f* is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Proof for m = 1

Proposition 19.1 (n=1 case for Thm 19.1)

If a function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies

 $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$ then we must have $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x}$ for some \mathbf{a} .

Proof for *m*=1, n=1

Analysis,	Conditions	Conclusion
	$f(\mathbf{x} \times \mathbf{y}) = \mathbf{x} f(\mathbf{x})$ $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$	Want $f(x) = 0x$ for some a .
Hint: WI	hat is f(2) ? f(3) ? f(2.5)?	What do we hope frei, frai, frai, frais, fra

Proof for *m***=1, n=2**

Conditions:
$$f(\alpha x) = \alpha f(x), 0 \quad f(x+y) = f(x) + f(y), 2$$

Want: $f([x_1]) = \alpha_1 x_1 + \alpha_2 x_2$ for some α_1, α_2 .
Analysis. $f([z]), f([z]) = ?$ $f([z]) = ?$

 $f(\begin{bmatrix} 1\\ 2 \end{bmatrix}) \stackrel{\text{(i)}}{=} f(\begin{bmatrix} 2\\ 3 \end{bmatrix}) = f(\begin{bmatrix} 2\\ 3 \end{bmatrix})$

Proof: Denote Then $f([x_1])$

Proof for *m***=1**, general n

Conditions:
$$f(\alpha x) = \alpha f(x)$$
, $\mathcal{D} f(x+y) = f(x) + f(y)$. $\mathcal{D} f(x+y) = f(x) + f(y)$. $\mathcal{D} f(x+y) = \mathcal{D} f(x) + \mathcal{D} f(y)$. $\mathcal{D} f(x) = \mathcal{D} f(x) + \mathcal{D} f(x) + \mathcal{D} f(y)$. $\mathcal{D} f(x+y) = f(x) + f(y)$. $\mathcal{D} f(x) = f(x)$. \mathcal{D}

$$Proof: f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} \right) =$$

Proof for general m, general n

Conductions:
$$f(x,x) = \alpha f(x), 0 \quad f(x+y) = f(x) + f(y), 0, \quad f:R^n + R^n$$

Want: $f(x) = Ax, \quad \forall x \in \mathbb{R}^n, \text{ for some } A \in \mathbb{R}^{n \times n}$.
Proof: Suppose $f(x) = \begin{pmatrix} f_i(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$.
From $0, 0, \quad ue \text{ get}$
 $f_i(\alpha x) = \quad f_i(x+y) =$
From Prop. 19.1, we get:
Denote $A =$
Then $f(x) =$

Definition 19.2 (alternative definition of LT):

If a mapping *f* from \mathbb{R}^n to \mathbb{R}^m satisfies $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, Then we say *f* is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Equivalent definition to Def 19.1.

Using properties to define sth.

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Instructor)

One sentence summary:

We learned definition and derivation of linear transformation

Detailed summary:

Properties of Determinants:

- -det(AB) = det(A) det(B)
- $-det(A) \neq 0$ iff A is invertible

Motivation/application of Linear transformation:

-How to zoom/rotate photos?

Definitions of Linear transformation (Euclidean space)

Def 1: $f(\mathbf{x}) = A\mathbf{x}$ Def 2: Any f that satisfies $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.