Lecture 19

Determinant (II) an Linear Transformation (I)

Instructor: Ruoyu Sun

Main topic: Linear transformation

- 1. Properties of Determinant
- 2. Motivation of Linear Transformation
- 3. Two Definitions of Linear Transformation

Strang's book: Sec 8.1, 8.2

After the lecture, you should be able to

- 1. Use properties of determinants to compute determinants
- 2. Describe one application of linear transformation

3. Describe two definitions of linear transformation and explain why they are equivalent

Review

Definition of det(*A*)

Denote by $M_{ij} \in \mathbb{R}^{(n-1)\times (n-1)}$ a matrix formed by deleting the *i*-th row and *j*-th column $\;$ of A Let $A \in \mathbb{R}^{n \times n}$ be a real square matrix

Definition 18.1 (Determinant) For any $A \in \mathbb{R}^{n \times n}$ with $n \geq 2$ define $det(A) =$ *n* ∑ *j*=1 $(-1)^{1+j}$ det(M_{1j}) cofactor of a_{1j} a_{1j} For a scalar $\alpha \in \mathbb{R}$, define det $(\alpha) = \alpha$.

This is a recursive definition! [递归方式的定义]

It is not hard to verify:

det() defined in Definition 18.1 satisfy the two desired properties.

Property P0 [transpose] $det(A^{\top}) = det(A)$

Property P1 [row/column-linear] The determinant is a linear function of each row and each column separately.

Property P2: **[row/column exchange]** Swapping columns or rows changes the sign of the determinant.

Part | Properties of det()

Determinant and Invertibility

Proposition 18.1

For any $A \in \mathbb{R}^{n \times n}$, $\det(A) \neq 0$ *iff* A *is invertible.*

Geometry:

 $det(A)$ = volume of polytope

 $volume = 0 \Leftrightarrow \begin{array}{c} \begin{array}{c} \text{\large \rightarrow} \end{array} \end{array}$ _____________________ ⇔ _____________________ ⇔

Equivalent Conditions for Invertibility ++

Theorem 15.2++ (Equivalent Conditions for Invertibility)

Let $A \in \mathbb{R}^{n \times n}$

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system $A x = 0$ has a unique solution $x = 0$
- 3. A is a product of elementary matrices
- 4. A has n pivots; or equivalently: $\mathrm{rank}(A) = n$
- 5. The columns of A span \mathbb{R}^n
- 6. The columns of A are linearly independent
- 7. The columns of A form a basis of \mathbb{R}^n
- 8. dim($C(A)$) = *n*
- 9. $dim(N(A)) = 0$ or $N(A) = \{0\}$

10. $det(A) \neq 0$

Property P3 [Diagonal and triangular matrix]

If $A \in \mathbb{R}^{n \times n}$ is a triangular matrix with diagonal entries $a_{11},...,a_{nn}$ $det(A) = a_{11} \dots a_{nn}$

Property P4 [product]

For any two matrices $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A) \det(B)$

Property P5 [inverse]

For any invertible $A \in \mathbb{R}^{n \times n}$, $\det(A^{-1}) =$ 1 det(*A*) Type I: **Add a Scaled Row to Another**

Determinants of Type I Elementary Matrices

Type I: **Add a Scaled Row to Another**

$$
\det(E_{\beta R_i + R_j}) = 1 \times 1 \times \dots \times 1 = 1
$$

Property P4 [product]

For any two matrices $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A)\det(B)$

Property P6 [multiply-add operation]

"Add a Scaled Row to Another" does not change the determinant.

Determinants of Three Elementary Row Operations

$$
\begin{bmatrix}\n a & b \\
 c & d\n\end{bmatrix}\n\xrightarrow{R_{1} \leftrightarrow R_{2}}\n\begin{bmatrix}\n c & d \\
 a & b\n\end{bmatrix}\n\qquad det x
$$
\n
$$
\begin{bmatrix}\n a & b \\
 c & c\n\end{bmatrix}\n\qquad det x
$$
\n
$$
\begin{bmatrix}\n a & b \\
 c & c\n\end{bmatrix}\n\qquad det x
$$
\n
$$
\begin{bmatrix}\n a & b \\
 \beta a+c & \beta b+d\n\end{bmatrix}\ndet x
$$

Example

Two cases.

Case I: A is not invertible. Then AB is not invertible (exercise). Then det(A)det(B) = 0; and det(AB) = 0. The relation holds.

Case II: A is invertible.

Write $A = E_m...E_1$ where each E_i is an elementary matrix. **Lemma**: If E is elementary matrix, then $det(EK) = det(E)det(K)$ for any square matrix K.

$$
det(AB) = det(E_m \cdots E_2 E_1 B)
$$

= det $(E_m) \cdot det(E_{m-1} \cdots E_2 E_1 B)$
:
= det $(E_m) \cdot \cdots \cdot det(E_2) \cdot det(E_1) \cdot det(B)$
= det $(E_m \cdots E_2 E_1) \cdot det(B)$
= det $(A) \cdot det(B)$.

Determinants of Type I Elementary Matrices

Property P7 [block matrix]

If A is invertible, then
$$
det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = det(A)det(D - CA^{-1}B)
$$
.

Corollary: $det(I + AB) = det(I + BA)$.

Part II Motivation of Linear Transformation

Zoom Photos

ANDROID » ANDROID APPLICATIONS

How to Zoom with the Camera on **Android**

Rotate Photos

How to rotate photos on iPhone

Yes, I know you can do it on the phones.

But…

How do the phones accomplish the job?

Zoom Shapes

Zoom Shapes

Level 1: I memorized: rotation can be achieved by the formula.

Level 2: I can prove: indeed this formula gives the rotation.

Level 3: I know how to derive this formula.

Part III Definition of Linear Transformation

Function (High School):

Chinese: 设两个非空数集X, Y,如果按照某种确定的对应关系f, 使得对于X中的任意一 个数, 在Y中都有唯一确定的一个数f(x)与之对应, 那么就称f: X —> Y是一个函数。 **English**: Given two non-empty sets of numbers, X and Y, if there exists a certain definite correspondence relation f, such that for every number in set X, there is a uniquely determined number f(X) in set Y corresponding to it, then this relation f: $X \rightarrow Y$ is called a function.

Mapping:

A mapping from a [set](https://en.wikipedia.org/wiki/Set_(mathematics)) *X* to a set *Y* assigns to each element of *X* exactly one element of *Y*.

The set *X* is called the [domain](https://en.wikipedia.org/wiki/Domain_of_a_function) of the mapping and the set *Y* is called the [codomain](https://en.wikipedia.org/wiki/Codomain) of the mapping.

Remark: In math, many people use mapping and function interchangeably. Some people, e.g., Serge Lang, requires the codomain of a function to be a set of numbers.

Linear Function

Definition 19.1:

Suppose $a_1, ..., a_n$ are given real numbers, $\mathbf{x} = (x_1, ..., x_n)$.

 $f(\mathbf{x}) = a_1 x_1 + \ldots + a_n x_n$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Linear Function

Definition 19.1:

Suppose $a_1, ..., a_n$ are given real numbers, $\mathbf{x} = (x_1, ..., x_n)$.

 $f(\mathbf{x}) = a_1 x_1 + \ldots + a_n x_n$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Equivalent Definition:

Suppose $\mathbf{a} \in \mathbb{R}^n$ is a given real vector, $\mathbf{x} \in \mathbb{R}^n$. . $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{a} \rangle$ is called a linear function from \mathbb{R}^n to \mathbb{R} .

Recall: From Lecture 3:

Definition of linear equation:

Suppose $a_1, ..., a_n, b$ are given real numbers, $x_1, ..., x_n$ are variables. We say $a_1x_1 + ... + a_nx_n = b$ is a linear equation.

Linear Transformation (Euclidean space)

Definition 19.2:

Suppose $a_{i,j}, i = 1,...,m; j = 1,...,n$ are given real numbers.

$$
f(\mathbf{x}) = (a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{m1}x_1 + \dots + a_{mn}x_n)
$$

is called a linear transformation (or linear map) from \mathbb{R}^n to \mathbb{R}^m .

Equivalent Definition (matrix form):

 $\textsf{Suppose}\,A \in \mathbb{R}^{m \times n}$ is a given real matrix.

 $f(\mathbf{x}) = A\mathbf{x}$ is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Linear Function v.s. Linear Transformation

$$
f(x) = a^T x \qquad (\text{near function}, R^n \rightarrow R)
$$

$$
f(x) = \begin{pmatrix} a^T x \\ a^T x \\ \vdots \\ a^T n x \end{pmatrix} \qquad (\text{near transformation}, R^n \rightarrow R^m)
$$

Recall: From Lecture 3: Definition of linear system of equations:

 $\textsf{Suppose}\ a_{i,j}, i=1,...,m; j=1,...,n$ are given real numbers. We say $a_{11}x_1 + ... + a_{1n}x_n = b_1 ...$, $a_{m1}x_1 + ... + a_{mn}x_n = b_n$ is a system

of linear equations.

Examples of Linear Transformations

Example

 $L: \mathbb{R}^2 \to \mathbb{R}^2$. Stretching or shrinking: $L((x, y)^T) = (\alpha x, \alpha y)^T (\alpha > 0)$

Examples of Linear Transformations

Example

Examples of Linear Transformations

Example

Let $L : \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined as:

$$
L((x, y)^T) = x - y
$$

Relation and Difference?

Linear transformation Linear system of equations

$$
f(\mathbf{x}) = A\mathbf{x} \qquad \qquad A\mathbf{x} = \mathbf{b}
$$

Math form: similar Meaning: different

Mapping Equation

Describes a relation built on mapping

e.g. President is a "relation" equation is "question

Relation and Difference?

Rotating is a "transformation".

Question 1: How do I know it's a linear transformation?

Question 2: How do I derive its expression?

Remark: I might ask you, what questions d

Part IV Another Definition of Linear Transformation

Linear Transformation ==> Superposition (叠加)

Property 19.1 [superposition property]

If f is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m , then $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

In words, transformed LC of vectors = LC of transformed vectors.

Examples:

Non-examples:

Linear Transformation ==> Superposition (叠加)

Property 19.1 [superposition property]

If f is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m , then $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

In words, transformed LC of vectors = LC of transformed vectors.

```
Corollary 19.1
If f is a linear transformation from from \mathbb{R}^n to \mathbb{R}^m, then
                                        f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}).
                              f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.
```
Superposition ==> Linear Transformation

Definition:

 $\mathsf{Suppose} \, f_i(\mathbf{x})$ is a function from \mathbb{R}^n to \mathbb{R} , $i=1,...,m$.

 $f(\mathbf{x}) = (f_1(\mathbf{x}), ..., f_m(\mathbf{x}))$ is called a mapping from \mathbb{R}^n to \mathbb{R}^m .

Remark: Can also call it "vector function" (向量函数).

Theorem 19.1 If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$ Then f is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Proof for m = 1

Proposition 19.1 (n=1 case for Thm 19.1) If a function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies

 $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$ t hen we must have $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x}$ for some \mathbf{a} .

Exercise 1: Prove that if
$$
f: R \rightarrow R
$$
 satisfies (*) for n=1,
\nthen $f(x) = ax$, $\forall x \in R$ for some a $\in R$.
\nHint: What is $f(2) ? f(3) ? f(2.5) ?$
\nExercise 2: Prove that if $f: R^2 \rightarrow R$ satisfies (*), then
\n $f(x) = a_1 x_1 + a_2 x_2$ for some $a_1, a_2 \in R$.

Proof for *m***=1, n=1**

Proof for *m***=1, n=2**

Cond: times:
$$
f(\alpha x) = \alpha f(x), 0
$$
 $f(x+y) = f(x) + f(y).$

\nWhat: $f([\begin{matrix} x_1 \\ x_2 \end{matrix}]) = \alpha_1 x_1 + \alpha_2 x_2$ for some α_1, α_2 .

\nAnalysis: $f([\begin{matrix} 1 \\ 2 \end{matrix}])$, $f([\begin{matrix} 2 \\ 3 \end{matrix}]) = ?$

\nflating this: $f([\begin{matrix} 1 \\ 2 \end{matrix}]) = ?$

 $f(\begin{bmatrix}1\\2\end{bmatrix})\stackrel{\circ}{=}\frac{1}{2}$

 $\frac{\text{Proof}}{\text{Then } f([\frac{x_1}{x_2}])}$

Proof for *m***=1, general n**

$$
Cond: times: f(\alpha x) = \alpha f(x), D f(x+y) = f(x) + f(y). D. f: R^{n} \rightarrow R
$$

Wont: $f(x) = a^{T}x, yxeR^{n}, for some a \in R^{n}$.

$$
\underline{\text{Proof}}: \quad f\left(\begin{array}{c} x_1 \\ x_2 \\ x_1 \end{array}\right) =
$$

Proof for general m, general n

Conduthms:
$$
f(\alpha x) = \alpha f(x), \mathbb{D} f(x+y) = f(x) + f(y), \mathbb{D} f : \mathbb{R}^n \cdot \mathbb{R}^m
$$

\nWhat: $f(x) = A \times, \forall x \in \mathbb{R}^n$, for some $A \in \mathbb{R}^{m \times n}$.

\nProof: Suppose $f(x) = \begin{pmatrix} f(x) \\ f(x) \\ f_m(x) \end{pmatrix}$.

\nFrom $\mathbb{D}, \mathbb{D}, \mathbb{D}, \mathbb{D}$ get

\n $f_i(\alpha x) = f_i(x+y) = f_i(x$

Definition 19.2 (alternative definition of LT):

If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ Then we say f is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Equivalent definition to Def 19.1.

Using properties to define sth.

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Instructor)

One sentence summary:

We learned definition and derivation of linear transformation

Detailed summary:

Properties of Determinants:

- $-\text{det}(AB) = \text{det}(A) \text{ det}(B)$
- $-\text{det}(A) \neq 0$ iff A is invertible

Motivation/application of Linear transformation:

—How to zoom/rotate photos?

Definitions of Linear transformation (Euclidean space)

Def 1: $f(x) = Ax$ Def 2: Any f that satisfies $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$, $\forall \alpha, \beta \in \mathbb{R}, \forall x, y \in \mathbb{R}^n$.