Lecture 21

Linear Transformation III

Instructor: Ruoyu Sun

Logistics: Midterm Exam

frnal grade vil he relcted to distribution

Average: 49.3/90 Medium: 50/90 Max: 84/90 |
|
|90
| age: 49
um: 50
84/90

Main topic: Linear transformation II

- 1. View Matrix as Linear Transformation
- 2. Linear Transformation on General Linear Spaces
- 3. Matrix Representation of General Linear Transformation

Strang's book: Sec 8.1, 8.2

After the lecture, you should be able to

- 1. Tell the relation of linear transformation and matrix
- 2. Verify linear transformation and compute it for general linear spaces
- 3. Derive the matrix representation of general linear transformation

Review

Rotate Photos

How to rotate photos on iPhone

Motivating Question

Linear Transformation in Euclidean Space: Two Definitions

Two equivalent definitions:

Definition 19.1 (matrix form): $Suppose A \in \mathbb{R}^{m \times n}$ is a given real matrix. $f(\mathbf{x}) = A\mathbf{x}$ is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Definition 20.1 (alternative definition of LT):

If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies

$$
f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \quad \forall \alpha, \beta \in \mathbb{R}, \forall x, y \in \mathbb{R}^n,
$$

Then we say f is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Property 20.1 [Def 19.1 ==> Def 20.1]

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined as $f(\mathbf{x}) = A\mathbf{x}$, then

 $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$

Theorem 20.1 [Def 20.1 ==> Def 19.1]

If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies

 $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$

 $\text{Then } f(\mathbf{x}) = A\mathbf{x}$ for some matrix A .

Any
$$
LT
$$
 f f

\nand \int TM $Hint$ A

\nand TM A

\nand TM

Part I View Matrix as Linear Transformation

 $+(x) = A X$ **Transformation -> Matrix** $M_{\text{atm/s}}$ $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} = [\vec{a}, \vec{a}]$ $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \qquad \qquad \mathcal{T}(e_1)$ Multiplying A: C1, C2 1^{A.}, Columns of A. $= \begin{bmatrix} 1 \\ 2 \end{bmatrix}, 1 + \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $A\cdot \begin{bmatrix} 1 \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Column 1 $E\left(\begin{array}{cc} 1 \\ 2 \end{array}\right)$ Columb (of A $A\cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ Column 2 X_1 Color $1 + X_2$. Colorn 2. Any vector \vec{x} . A $\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \chi_1 \vec{e}_1 + \chi_2 \vec{e}_2 \xrightarrow{A^2}$ χ_{1} \top (e₁) + χ_{2} \top (e₂) Conclusion: Matrix A defines a linear transformation Ax franted

Matrix \longrightarrow Transformation

Matrix \rightarrow a linear transformation.

Columns of the matrix —> transformed basis vectors.

 \longrightarrow

Linear transformation Ax:

Output space: Tearallelogram tile"

Determinant: Geometry Interpretation II

Determinant: Geometry Interpretation II

matrix A times vector $(-1,2)$ gives a point with coordinate (-1,2) in the new system where basis is columns of A

Matrix -> Transformation⁽Dependent Columns)

Three Cases of f(\mathbb{R}^2)

Suppose
$$
f(x) = AX
$$
.
\n
$$
\begin{array}{|c|c|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|}\hline \end{array}
$$
\n
$$
\begin{array}{|c|c|}\hline \end{array}
$$
\

Exercise

Judgement: Suppose $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$ is a standard basis of \mathbb{R}^n . $Suppose f(x) = Ax$, where $A \in \mathbb{R}^{m \times n}$. $\textsf{Then}\,f(\mathbf{e}_1), f(\mathbf{e}_2), ..., f(\mathbf{e}_n) \in \mathbb{R}^{m \times 1}$ form a basis of $\mathbb{R}^{m \times 1}.$

Folse. Counter-example: $f(x) = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} x, x \in R^{2x!}$ Then $\{f(e_i), f(e_i)\} = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \}$ a's not a basis of R2x1

Example: Mapping to Higher-Dim Space

Lessom from	$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\in R^{2x}$	$R' \rightarrow R^2$	
This page	$A = \frac{2}{n} \rightarrow \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{x}{2x} \\ \frac{y}{2x} \end{bmatrix}$	$\frac{1}{2} \rightarrow \mathbb{R}^2$		
On here to exponenting	A :	$\frac{X}{R'}$	$\times \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{x}{2x} \\ \frac{x}{2x} \end{bmatrix}$	$\mathbb{Q} \rightarrow \mathbb{T}(\mathbb{Q})$
On here, there is a simple problem	$\mathbb{Q} \neq 1$	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \rightarrow \mathbb{T}(\mathbb{Q})$	
from the other problem	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \rightarrow \mathbb{T}(\mathbb{Q})$	
from the other problem	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \rightarrow \mathbb{Q} \neq \mathbb{Q}$	
From the other problem	$\mathbb{Q} \neq \mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \neq \mathbb{Q}$	
From the other problem	$\mathbb{Q} \neq \mathbb{Q} \neq \mathbb{Q}$	$\mathbb{Q} \neq \mathbb{Q} \neq \mathbb{Q}$		

 \mathbf{I}

Wrop - Up: What We Learned So For ?
How to understad linear transformation?
Def. \Rightarrow T($\times e_1 + \times e_2 = \times T(e_1) + \times T(e_2)$ (*)
This definition (x) has a few implication.
(i) Interpretation: If you know T(e), T(e_1) then you should how T(x), by x.
(2) condition (X, X ₂) \Rightarrow coordinate (X ₁ , X ₂) \n 'bas's' (e ₁ , e ₂) \rightarrow (T(e ₂), T(e ₃) [Remak, T(e ₁), T(e ₂) may be dependent. \n This is coordinates (e ₁ , e ₂) \rightarrow (T(e ₁), T(e ₂) [Remak, T(e ₁), T(e ₂) may be dependent. \n This is coordinates (e ₂), e ² if T(x ₁ , x ₂ , P ²) \n (f ₂), F(x ₁), F(x ₂), F

Part II Linear Transformation between Two Linear Spaces

Linear Transformation for Any Linear Space

```
Definition 21.1 (Linear Transformation)
Let V and W be two linear spaces.
A mapping L: V \rightarrow W is called a linear transformation if
L(\alpha v + \beta u) = \alpha L(v) + \beta L(u), for all \alpha, \beta \in \mathbb{R}, and v, u \in V.
```
 V is the **domain** of the linear transformation *W* is the **codomain** of the linear transformation

Remark: This is an extension of Def 20.1 from Euclidean spaces to any spaces.

Linear Transformation for Any Linear Space

```
Definition 21.1 (Linear Transformation)
Let V and W be two linear spaces.
```
A mapping $L: V \rightarrow W$ is called a linear transformation if $L(\alpha v + \beta u) = \alpha L(v) + \beta L(u)$, for all $\alpha, \beta \in \mathbb{R}$, and $v, u \in V$.

Remark:

 $L(\alpha v + \beta w) = \alpha L(v) + \beta L(w)$ for all $\alpha, \beta \in \mathbb{R}, \nu, \omega \in \mathcal{V}$

 $L(v + w) = L(v) + L(w)$ $L(\alpha v) = \alpha L(v)$

for all $\alpha \in \mathbb{R}$, $\nu, \omega \in V$

Simple Examples on Matrix Space

Eg: Suppose $X \in \mathbb{R}^{m \times n}$ is a matrix variable. $f(X) = 2X$ is a linear transformation from $\mathbb{R}^{m \times n}$ to $\mathbb{R}^{m \times n}$. $f(\alpha x) = \alpha f(x)$
2(ax) $\leq \alpha f(x)$ $f(x+y) = f(x) + f(y)$ **Eg:** Suppose $\overline{A} \notin \mathbb{R}^{k \times m}$ is fixed. $X \in \mathbb{R}^{m \times n}$ is a matrix variable. Then $f(X) = AX$ is a linear transformation from $\mathbb{R}^{m \times n}$ to $\mathbb{R}^{k \times n}$. $f(x) = x f(x)$ $f(x+y) \stackrel{?}{=} f(x+f(y))$ $A(\mathbf{x}) = \mathbf{x} A)$ $A(X+Y) = AX+AY$
metros distribute ne

Examples or Non-Examples on Matrix Space

Examples on Polynomial Space

Example $\rightarrow \left(\mathbb{R}^{2\times 2}\right)$ be a mapping defined as: Let 7

$$
T(ax^3 + bx^2 + cx + d) = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right]
$$

Is this L a linear transformation?

For any
$$
\alpha \in R
$$
, $f \in R$, $g \in P_3$,
\nSuppose $f(x) = \sum_{i=0}^{3} a_i x^i$, $g(x) = \sum_{i=0}^{3} b_i x^i$,
\n $f(x) = \sum_{i=0}^{3} (a_i + b_i) x^i$ \rightarrow p^3y -odd⁺
\n $L(f+g) = [a_3+b_3 \text{left}] = [a_1 \text{right}] + [b_1 \text{sub}] = L(f)+L(g)$
\n $L(\alpha f) = [\alpha_1 \text{right}] = [\alpha_1 \text{right}] = \alpha_1 \text{right}$
\n $L(\alpha f) = [\alpha_2 \text{right}] = \alpha_2 \text{right}$

Is Differentiation a Linear Transformation?

Eg: Is
$$
T(u) = \frac{du}{dx}
$$
 is a linear transformation? $\overline{f(f)} = f'$
\n**Reminder of notation:** e.g. If $u(x) = x^2$, then $\frac{du}{dx} = 2x$.
\n**Check:**
\n
$$
\overline{f(\alpha u)}^2 \propto \overline{f(u)}
$$
\n
$$
\overline{f(u+v)} = \overline{f(u)} + \overline{f(v)}^2
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = 2x
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = 2x
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n
$$
\overline{f(\alpha u)}^2 = \alpha \cdot u'
$$
\n

Domain Shall be Linear Space

Eg: Is $T(u) = \frac{du}{dx}$ is a linear transformation? Definition 20.1 (Linear Transformation) $\frac{1}{2}$ Let V and W be two linear spaces. A mapping $L: V \rightarrow W$ is called a linear transformation i

Notice: T is not defined for all functions.

Need to specify a linear space s.t. T is defined!

Function Space

Differentiation is Linear Transformation

Claim:
$$
T(u) = \frac{du}{dx}
$$
 defined on $C^1(\mathbb{R})$ is a mapping from $C^1(\mathbb{R})$ to $C(\mathbb{R})$.
\nIt is a linear transformation.
\n
$$
\frac{\text{For } \text{Reid}, 0 \text{ Input space } C'(\mathbb{R}), \text{ output space } G'(\mathbb{R}), \text{ output space } G'(\mathbb{R}), \text{ output space } G'(\mathbb{R}) \text{ and } C'(\mathbb{R}) \text{ for } \mathbb{R} \text{ to } G \text{ to } G
$$

Part III^{Matrix} Representation of Linear Transformation for Any Linear Spaces

Recall: Two Definitions

Euclidean Space

Definition 19.1 (matrix form): $\textsf{Suppose}\,A \in \mathbb{R}^{m \times n}$ is a given real matrix. $f(\mathbf{x}) = A\mathbf{x}$ is called a linear

transformation from \mathbb{R}^n to \mathbb{R}^m .

Definition 20.1 (alternative definition of LT):

If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies

Matrix

S.P.

$$
f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}), \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,
$$

Then we say f is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

General Space

Definition 21.2 (Linear Transformation)

Let V and W be two linear spaces. A mapping $L: V \rightarrow W$ is called a linear **transformation** if $L(\alpha v + \beta u) = \alpha L(v) + \beta L(u)$, for all $\alpha, \beta \in \mathbb{R}$, and $v, u \in V$..

Matrix Representation of Differentiation

Recall: Vector Representation of Linear Space

Matrix Representation

Matrix Representation

$$
X \longrightarrow \mathcal{U}_{1} \longrightarrow \mathcal{U}_{2} \longrightarrow \mathcal{U}_{2} \longrightarrow \mathcal{U}_{3} \longrightarrow \mathcal{U}_{4} \longrightarrow \mathcal{U}_{5} \longrightarrow \mathcal{U}_{6} \longrightarrow \mathcal{U}_{7} \longrightarrow \mathcal{U}_{8} \longrightarrow \mathcal{U}_{9} \longrightarrow \mathcal{U}_{1} \longrightarrow \mathcal{U}_{
$$

Relation to Part 1

Lesson about relation of last page & Pav(I_1 If we pick $\{v_0,v_1\}$, $\{u_0,u_2,u_3\}$ as standard basis of $\mathbb{R}^2\mathbb{R}^2$, then we get the deriverity of Port 1.

For general linear spaces, we have $extn$ [u_ku_k], [u₁, u₂, u₃], to relate X_i to Euclidean space.

Expression for General Linear Space

Computing T(u):

 $u = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ must transform to

 $T(u) = c_1 T(v_1) + c_2 T(v_2) + \cdots + c_n T(v_n)$

Suppose you know $T(v)$ for all vectors v_1, \ldots, v_n in a basis Then you know $T(u)$ for every vector u in the space.

Matrix representation of T:

 $T(v_i)$ is a combination $a_{i1}w_1 + \ldots + a_{in}w_n$ of the output basis for W.

The matrix $(a_{ij})_{m \times n}$ is the matrix representation of T.

Key rule: The jth column of A is found by applying T to the jth basis vector v_i

Algorithm 24.1 (for general linear space)

Step 1: Pick a basis $\{V_1, \ldots, V_n\}$ of input space V. **Step 2**: Compute $f(\mathbf{v}_i) \in W, \forall i$.

Step 3: Find vectors. **Step 3.1**: Pick a basis $\{u_1, \ldots, u_n\}$ of output space W.

Step 3.2: Express
$$
f(\mathbf{v}_i) = \sum_{j=1}^{m} a_{ij} \mathbf{u}_j = [\mathbf{u}_1, ..., \mathbf{u}_n] \begin{bmatrix} a_{i1} \\ \cdots \\ a_{im} \end{bmatrix}
$$

\nStep 4: Form $A = [\mathbf{a}_1, ..., \mathbf{a}_n] \in \mathbb{R}^{m \times n}$
\nStep 5: Compute $y = f(x)$, for any $x \in V$.
\nStep 5: Compute $y = f(x)$, for any $x \in V$.
\nStep 6.1: Express X as $\chi = \sum_{i=1}^{n} \chi_i \nu_i$.
\nStep 8.2: Compute $\begin{bmatrix} y_i \\ y_m \end{bmatrix} = A \begin{bmatrix} x_i \\ y_i \\ x_i \end{bmatrix}$
\nStep 5.3: Compute $y = \sum_{i=1}^{m} y_i \mu_i$.

[Explan Step 5].
Diagram: View L.T. as Operating on Coordinates

If we know 'matrix A'. how ~~to~~ Compute
$$
f(x)
$$
?

\nBook: $\{v_{0} \rightarrow v_{n}\} \times \longrightarrow Y$ Bays : $\{u_{1}, u_{2}, \cdots, u_{m}\}$

\nOriginal
\n $x = \sum_{i=1}^{n} x_{i}v_{i}$ $y = \sum_{j=1}^{m} \{u_{j} \cdot u_{j}\}$

\nConsider $x = \int_{\text{normal, for } x}^{m} x_{i}v_{i}$ $y = \sum_{j=1}^{m} \{u_{j} \cdot u_{j}\}$

\nCordinate of x and x is a coordinate of $y = T(x)$

\nConclinate of x and $(x_{1}, ..., x_{n}) \xrightarrow{\text{mult, } y_{n}} A$ and $(y_{1}, ..., y_{n}) = A X$

e
Endidem spac.

Problem 1. Consider
$$
T(u) = \frac{du}{dx}
$$
 : $P_2 \rightarrow P_1$.
Find the matrix of T under the basis of input space {1, x, x²}
and the basis of the output space {1, x}

Method 1.	(Institute way)	
7:	$ox^2 + bX + C$	$2aX + b$
Under the two basis, the coordinates are		
$\overrightarrow{w} = [C, b, a]^T \longrightarrow \overrightarrow{z} = [b, 2a]^T \stackrel{\text{unit}}{\longrightarrow} A\overrightarrow{w}$		
Since	$\begin{bmatrix} b \\ 2a \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} c \\ b \\ a \end{bmatrix}$	
Thus	$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	

Method 2 (Use Algorithm 21.1)
\nWe compute the representation of
$$
T(N)
$$
, $T(U_2)$
\nunder the bos- Y of P_{1} : {(.x)
\n $U_1 = 1$, $T(U_1) = 0 = E_1$, X) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, under bos- Y of P_1 , coordinate $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
\n $U_2 = X$, $T(U_2) = 1 = [1, X] \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, under bos- Y of P_1 , coordinate $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
\n $V_3 = X^2$, $T(U_3) = 2X = [1, X] \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, under bos- Y of P_1 , coordinate $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$
\nCombine three vectors, get matrix
\n $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

How to Use "Matoix" Form?

Problem 2. Compute	$T(u) = \frac{du}{dx}$ for any $u \in P_2$.
Method 1	$(classical way)$
For any	$0x^2 + bx + c \in P_2$,
from Calculus rule, $T(ax+bx+c) = 2ax + b$.	
Method 2. (matrix form)	
For any $f(x) = a+bx+cx^2 \in P_2$,	
Under $bosh \{(x, x)^4\}$, it is coordinate in $[0, b, c]^T$.	
Compare	$A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ 2c \end{bmatrix}$.
Thus $output$	$T(f) = [1, x] \begin{bmatrix} b \\ 2c \end{bmatrix} = b + 2c \times$.
REmodels: $Method 2$ is more complicated then Method 1,\n	
Thus not necessary for this specific example.	
If $serves$ as an illustration of Algorithm 21.1, and help you\n	
Understanding between the problem 21.1, and the figure is a particular $inbot$ if if is from a different angle.\n	

Matrix Representation of Differentiation

 $T(u) = \frac{du}{dx}$ defined on P_2 is a linear transformation from P_2 to P_1 . Is T related to a matrix?

Answer.
\nUnder the bas:3 of 'Input space {1, x, x'}
\nand the bas:3 of the output space {(x,x)},
\n
$$
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \text{matrix form of the derivative } T = \frac{d}{dx}.
$$

Multiplication $Au = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 2c \end{bmatrix}$ **Output** $\frac{du}{dx} = b + 2cx$. Input u $a + bx + cx^2$

Evercise.

Problem.
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2\times2}
$$
, \Rightarrow fixed
Consider $f(x) = AX - XA$, where $X \in \mathbb{R}^{2\times2}$.
Prove f is a linear transformation,
and find the matrix form of f .

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Write Your Own)

One sentence summary:

We learned general linear transformation and how to "express" it.

Detailed summary:

Linear transformation view of matrix.

- —Columns of a matrix are T(e_i)'s
- $-\det(A)$ = volume change ratio of the transformation

Linear transformation between two linear spaces.

- —Define by superposition property.
- $-Differentiation$ is a linear transformation.

$-Matrix$ representation of general linear transformation:

 Step 1: Find the transformed input basis elements; Step 2: Find their vector representations under output basis; Step 3: Combine these vectors to get a matrix.

