Lecture 23

Eigenvalue II: Spectral Decomposition

谱分解

Instructor: Ruoyu Sun

Main topic: Spectral Theorem

- 1. Eigenbasis
- 2. Spectral Theorem

After the lecture, you should be able to

- 1. Provide an example where eigenvectors do not form a basis
- 2. Describe the spectral decomposition and related properties
- 3. Explain the main proof steps of spectral decomposition

Review

Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

If there exists a scalar λ ($\in \mathbb{R}$ or \mathbb{C}) and a nonzero vector x such that $Ax = \lambda x$,

then λ is called a (real or complex) **eigenvalue** and x is called an **eigenvector** with respect to (or associated with; corresponding to) λ .

General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve det $(A - \lambda I) = 0$ and get *n* roots $\lambda_1, \ldots, \lambda_n$ Solving single-var polynomial.

Step 2: For each λ_i , find the eigenspace $\text{Null}(\lambda_i I - A)$ Solving up to *n* linear systems. $A \chi_i = \lambda \chi_i$

 $\operatorname{Null}(\lambda_i I - A) \neq \left\{ \begin{array}{l} \operatorname{eigenvectors} \text{ of } A \text{ with} \\ \operatorname{respect} \text{ to the eigenvalue } \lambda_i \end{array} \right\}$

det
$$(\lambda I - A)$$

Characteristic polynomial $p_A(\lambda) = \det(A - \lambda I)$ is a degree-*n* polynomial with coefficient of λ^n being $(-1)^n$.

Fact:

Any $n \times n$ (no matter real or complex) matrix A has exactly ncomplex eigenvalues (counting multiplicity).

Here, multiplicity of λ_j is the power k of the term $(\lambda - \lambda_j)$ in the decomposition of the characteristic polynomial $p_A(\lambda) = (-1)^n \prod_{j=1}^n (\lambda - \lambda_j)^{k_j}$.

 $a_{x^{2}+b}x+c = a(x-x_{1})(x-x_{2})$ $\chi_{z}\chi_{z} = a(x-\chi_{1})^{2}$

Part 1 Eigenbasis

Multiset [多重集]

 $\left\{ \begin{array}{c} a, a, b \end{array} \right\}$ $\left\{ \begin{array}{c} 1, 1, 2 \end{array} \right\}$

Multiset A multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of it.

Can use $\#\{a_1, a_2, \ldots\}$ to denote a multiset; though some ppl just use $\{a_1, a_2, \ldots\}$

Multiplicity: If an element appear k times in the multiset, then the multiplicity of the element in the multiset is k.

(1),2).

Multiset [多重集]

Multiset A multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of it.

Can use $\#\{a_1, a_2, \ldots\}$ to denote a multiset; though some ppl just use $\{a_1, a_2, \ldots\}$

Multiplicity: If an element appears k times in the multiset, then the multiplicity of the element in the multiset is k.

Examples:

In the multiset $\#\{a, a, b\}$ the element *a* has multiplicity 2 and *b* has multiplicity 1.

In the multiset $#\{a, a, a, b, b, b\}$, *a* and *b* both have multiplicity 3.

The set $\{a, b\}$ contains only elements *a* and *b*. Each having multiplicity 1 when $\{a, b\}$ is seen as a multiset $\#\{a, a, a, b, b, b\}$.

Order does not matter: $\#\{a, a, b\}$ and $\#\{a, b, a\}$ denote the same multiset.

Linear Space over Complex Domain

Reading: Def: Linear Space over Complex Domain

Definition 23.3 (Linear space over \mathbb{C})

Suppose V is a set associated with two operations: (i) Addition "+": $\mathbf{u} + \mathbf{v} \in V, \forall \mathbf{u} \in V, \mathbf{v} \in V$. (ii) Scalar multiplication: $\alpha \mathbf{u} \in V, \forall \alpha \in \mathbb{C}, \mathbf{u} \in V$.

V is called a linear space over $\mathbb C$ if the 8 axiom axioms hold:

(A1)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \forall \mathbf{u}, \mathbf{v} \in V$$
.

(A2)
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{w}, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V.$$

(A3) There exists a element **0** s.t. $\mathbf{u} + \mathbf{0} = \mathbf{u}, \forall \mathbf{u} \in V$.

(A4) If
$$\mathbf{u} \in V$$
, then there exists $-\mathbf{u} = (-1)\mathbf{u}$, s.t. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
(A5) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}, \forall \alpha \in \mathbb{C}, \mathbf{u}, \mathbf{v} \in V$.
(A6) $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}, \forall \alpha, \beta \in \mathbb{C}, \mathbf{u} \in V$.
(A7) $\alpha(\beta \mathbf{u}) = (\alpha\beta)\mathbf{u}, \forall \alpha, \beta \in \mathbb{C}, \mathbf{u} \in V$.
(A8) $1\mathbf{u} = \mathbf{u}$.

lg, (^^,	N [hear	SP.
21	7 7 7 6) (C ,

Complex number written as
$$z = a + bi$$
, where $i = \sqrt{-1}$
Complex conjugate of x [x 的共轭复数] is $\bar{z} = 0 - bi$

Modulus of
$$\mathbb{Z}$$
 [記的模] is $|z| = \int_{a^2+b^2} [using a, b]$ $= 2 \cdot 2$ $|z \cdot 2|$

A complex number x = a + bi, where $i = \sqrt{-1}$ is a real number if b=0, iff $X = \overline{X}$.

A few statements about the complex vector space.

$$\{\underline{e_1, e_2, e_3}\} \text{ is still a basis of } \mathbb{C}^3.$$

$$\begin{bmatrix} 1\\ i\\ i \end{bmatrix} \text{ and } \begin{bmatrix} i\\ -1 \end{bmatrix} \text{ are linearly } \underbrace{All pondut}_{n} \text{ is still a basis of } \mathbb{C}^3.$$

$$\begin{bmatrix} 2\\ i\\ 1 \end{bmatrix} \cdot \hat{\mathbf{i}} = \begin{bmatrix} 1\\ i\\ 1 \end{bmatrix} = \mathbf{i} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} = \mathbf{i} \begin{bmatrix}$$

How Many Linearly Independent Eigenvectors?

Example 1: Do Eigenvectors Form a Basis?

Example 2: Do Eigenvectors Form a Basis?

How Many Linearly Independent Eigenvectors?

Judgement:

Statement 1: An $n \times n$ matrix always has n linearly independent eigenvectors.

You may ask: real or complex?

Judgement:

Statement 2: An $n \times n$ real matrix always has *n* linearly independent False (by example 2, no vecleigenvectors for some metrix) real eigenvectors.

Judgement:

Statement 3: An *n* × *n* real matrix always has *n* linearly independent complex eigenvectors (note: including real eigenvectors).

Example 3: Do Eigenvectors Form a Basis?

Example
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Eigenvalues are $det(\lambda I - A) = \begin{vmatrix} \lambda - i & -i \\ 0 & \lambda - i \end{vmatrix} = (\lambda - i)^{2} = 0$
 $\Rightarrow \lambda = 1$.
Eigenvectors are $\begin{pmatrix} \lambda - i & -i \\ 0 & \lambda - i \end{vmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 & -i \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{3} \end{pmatrix} = 0 \Rightarrow x_{2} = 0$
 $Mil(\lambda I - A) = f(\frac{1}{2}) | t \in C \}$.
Can you find two eigenvectors that form a basis of \mathbb{R}^{2} ? (\mathbb{C}^{2})
 Mo Cannot span \mathbb{R}^{2} (or \mathbb{C}^{2})
 $Remark$ (advanced reading) This example is related to "Jorden form"
Interested students may search it; we do NOT teach it.

Eigenbasis may NOT exist

Eigenspace dimension dim(N($\lambda_1 I - A$)) =1. Multiplicity is 2.

Do Eigenvectors Form a Basis?

Part II Spectral Decomposition

sec. 6.4 for real symmetric matrices.

Proof: Reverse the chain of equalities in (**),

Orthonormal Eigenbasis

Claim 23.1 [orthonormal eigenbasis ==> symmetric matrix] Eigenvectors of a real matrix A can form an orthonormal basis of \mathbb{R}^{2} $<=>A = VDV^{\top}$ where D is a real diagonal matrix, V is a real orthogonal matrix. Proof: "=>" Suppose eigenvector V_{1, \dots, V_n} form an orthonormal basis of \mathbb{R}^n , then $V = [V_{1, \dots, V_n}]$ is an orthonormal matrix. Suppose Av;= >; v;, where >; EC; then >; ER (since A, v; ER) By Lemma 23.1, we have AV = VD, where D=diag (hi-, hr) Then $A = VDV^{-1} = VDV^{-1}$. "=" Suppose $V = (v_1, ..., v_n)$, $D = dig(\lambda_1, ..., \lambda_n)$, Then $\{v_j\}$'s form an orthonormal basis. By Lemma 23.2, we have $Av_j = \lambda_j v_j$, $j=1,..., \Lambda$. Thus $\{v_j\}$'s are eigenvectors! =) ligenvectors of A conform an orthonormal basis, [] Corollary: If a real matrix A has an orthonormal eigenbasis, then A is a symmetric matrix.

What about the other direction?

Proof sketch of Clarm 23.1.
Faut
$$AV_j = \lambda_j V_j$$
, $V_j \in [V_{j-1}, n]$
 $\Rightarrow AV = VD$.
Noch. $\{V_j\}$ orthonord $\Rightarrow V = (V_{i_j} = V_{i_j})$
 $AV = VD$
 $\Rightarrow A = VD V' = VDV^T$

Proof of Corollary:

$$\underline{A^{T}} = (UDV^{T})^{T} = (V^{T})^{T} \underline{D}^{T} V^{T}$$

$$= VDV^{T} = A$$

)

A=VVT 1 Synam. since $A^T = (V^T)^T V^T = VV^T = A$. A - UDV, is also symmetry (if Dis diagonal)

 $\begin{bmatrix} \lambda_{i} & 0 \\ 0 & \lambda_{n} \end{bmatrix} A; multiply j-throw by \lambda_{j}$ A. [M. : multiply j-th column by λj

Spectral Theorem

Theorem 23.1 [Spectral Theorem]

Any real symmetric matrix A can be written as

$$A = VDV^{\top} \quad (*)$$

where D is a real diagonal matrix, V is a real orthogonal matrix.

Vector form [practice]:

$$A = VDV^{T} = \begin{bmatrix} V_{1}, \dots, V_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{n}^{T} \end{bmatrix} [column \& row form]$$

$$= \begin{bmatrix} \lambda_{1} V_{1}, \dots, \lambda_{n} V_{n} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{n}^{T} \end{bmatrix} [outer product]$$

$$= \lambda_{1} v_{1} v_{1}^{T} + \dots + \lambda_{n} V_{n} V_{n}^{T} = \sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{T} .$$
(*) and (**): Eigenvalue decomposition (EVD) or eigendecomposition of A.

 $AV_{i} = \lambda_{i}V_{j} \quad (*)$ $V = [V_{i}, \cdot, V_{n}], \quad V_{i}'s \text{ one eigenvertes}$ $D = diag(\lambda_{i}, -\lambda_{n}), \quad \lambda_{i}'s \text{ one eigends}$

Remark on Vector Form of EVD

Matrix product (Lec 5-6).

$$AB = \sum_{j=1}^{2} a_j b_j^{T}$$
 (sum of outer products)

Mid-term exam:
Express BB^T = J by column form
$$B = [v_1, -v_n]$$

 $I = BB^T = (v_1, -v_n) \begin{bmatrix} v_1^T \\ v_1^T \\ v_n^T \end{bmatrix} = \sum_{j=1}^n v_j v_j^T,$

[-]ere:
$$A = VDV^{T} = \sum_{j=1}^{\infty} \lambda_{j} V_{j} V_{j}^{T}$$
, (weighted sum of outer products).

$$\frac{Me + hod 2}{If} = \sum_{j=1}^{n} \lambda_j U_j U_j^{T}, and (W_j^{*}s) \text{ orthonord set,}}{If} = \sum_{j=1}^{n} \lambda_j U_j U_j^{T}, and (W_j^{*}s) \text{ orthonord set,}}{(V_j \perp V_{\mu}, \forall j \neq k)} + Chon (A U_j = \lambda_j V_j . (U_j \perp V_{\mu}, \forall j \neq k))} = Chon (A U_j = \lambda_j V_j . (U_j \perp U_{\mu}, \forall j \neq k))}{I(V_j \perp 1)_{-}}$$

$$\frac{Phef}{I} = A \cdot V_1 = (\lambda_1 V_1 V_1^{T} + \dots + \lambda_n V_n U_n^{T}) \cdot V_1$$

$$= \lambda_1 V_1 V_1^{T} U_1 + \lambda_2 V_2 U_2^{T} V_1^{T} \dots + \lambda_n U_n U_n^{T} U_1$$

$$= \lambda_1 V_1 \cdot U_1 + (D + \dots + D)$$

$$= \lambda_1 V_1.$$

Properties of Real Symmetric Matrices

Real Symmetric Matrices

Property 1: All eigenvalues are real.

Property 2: All eigenvectors are real. (more rigorously, Con be real)

Property 3: Eigenvectors can form an orthonormal basis of \mathbb{R}^n . ($\sim \mathbb{C}^r$)

Together: A can be written as

$$A = UDU = \hat{Z} A_j v_j v_j^T$$

Geometry View

Previons (ectures Boss (R.,G) R, 7 As2 Ar, shope of tiles Change Here for symmetry AER^{nxn}. Boss {m, m) V2 Vz V, shape does not change (too much) directules stay. $A \times = (U_1, V_2) (\lambda_1 \times V_1, \lambda_2 \times V_2).$ $\chi_{z} \begin{pmatrix} v_{1} \\ v_{z} \end{pmatrix} (\chi_{1}, \chi_{z})$

The full proof of spectral theorem is skipped here (It requires a bit trick and induction)

λj =λk, tj=k.

Next, we only prove the case for distinct eigenvalues.

only prove the case for distinct eigenvalues.

only prove the case for distinct eigenvalues.

Proof of EVD for Distinct Eigenvalues (I): Real Eigenvalues

Proof of EVD for Distinct Eigenvalues (I): Real Eigenvalues

Assumption 23.1:
$$A \in \mathbb{R}^{n \times n}$$
 and $A = A^{\top}$. For $\overline{v}^{\top} v \ge 0$ iff $v \ge 0$.
Proof of Property 23.1:
Suppose $A\mathbf{v} = \lambda \mathbf{v}$, where $\lambda \in \mathbb{C}$, $\mathbf{v} \in \mathbb{C}^{n \times 1}$. Want to prove: $\lambda \in \mathbb{R}$.
Use two ways to compute $\overline{\mathbf{v}^{\top} A \mathbf{v}}$.
First way: $\overline{\mathbf{v}^{\top} A \mathbf{v}} = \overline{v}^{\top} (A \cdot v) = \overline{v}^{\top} \cdot \lambda \cdot v = \lambda \overline{v}^{\top} v$
Second way: $\overline{\mathbf{v}^{\top} A \mathbf{v}} = (\overline{v}^{\top} A) v = (\overline{v}^{\top} A^{\top}) v$
Second way: $\overline{\mathbf{v}^{\top} A \mathbf{v}} = (\overline{v}^{\top} A) v = (\overline{v}^{\top} A^{\top}) v$
 $\sum_{v \neq v} (\overline{v}^{\top} v) = \overline{v}^{\top} v$
 $\sum_{v \neq v} (\overline{v}^{\top} v) = (\overline{v}^{\top} v)$
 $v \neq v = (\overline{v}^{\top} A) v = (\overline{v}^{\top} A^{\top}) v$
 $\sum_{v \neq v} (\overline{v}^{\top} v) = (\overline{v}^{\top} v)$
 $\sum_{v \neq v} (\overline{v}^{\top} v) = (\overline{v}^{\top} v)$

Proof of EVD for Distinct Eigenvalues (I): Real Eigenvectors

Assumption 23.1 (1st part): $A \in \mathbb{R}^{n \times n}$. Property 23.2: For any eigenvalue of A, there exists a real eigenvector with respect to this eigenvalue. **Proof of Property 23.2:** Suppose $A\mathbf{v} = \lambda \mathbf{v}$, where $\lambda \in \mathbb{R}$, $\mathbf{v} \in \mathbb{C}^{n \times 1} \setminus \{\mathbf{0}\}$. Suppose $V = X + Y \cdot i$, where $x, y \in \mathbb{R}^{n \times 1}$, one of $x \cdot y \cdot s \neq 0$. D $A(x+yi) = \lambda(x+yi)$ $() \quad Ax + Ay : i = \lambda x + \lambda y \cdot i'$ D 2 C $\iff A \times = \lambda \chi, A y = \lambda y, (2)$ > One of Xiy shall be eigenreus

Proof of EVD for Distinct Eigenvalues (III):Orthogonality

Assumption 23.1: $A \in \mathbb{R}^{n \times n}$ and $A = A^{\top}$.

Property 23.3: Under Assumption 23.1, real eigenvectors corresponding to different eigenvalues are orthogonal.

Proof of EVD for Distinct Eigenvalues (III):Orthogonality

Assumption 23.1:
$$A \in \mathbb{R}^{n \times n}$$
 and $A = A^{\top}$.
Property 23.5 Under Assumption 23.1, eigenvectors corresponding to
different eigenvalues are orthogonal. Wort $X_1^{\top} X_2 = 0$
Proof: Suppose $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$. Check $x_1^{\top} A x_2$.
 $X_1^{\top} A X_2$
 $X_1^{\top} X_2 = 0$,
 $X_1^{\top} A X_2$
 $X_1^{\top} A X_2$
 $X_1^{\top} X_2 = 0$,
 $X_1^{\top} X_2 = 0$,
 $X_1^{\top} A X_2$
 $X_1^{\top} X_2 = 0$,
 $X_1^{\top} X$

1 2

EVD for Distinct Eigenvalues

Assumption 23.1: $A \in \mathbb{R}^{n \times n}$ and $A = A^{\top}$. Assumption 23.2: all eigenvalues of $A \in \mathbb{R}^{n \times n}$ are distinct.

Proof of Thm 23.1 under Assumption 23.2: (Combining Property 23.1,23.2, 23.3)

So far, we have proved Thm 23.1 for distinct eigenvalues.

The proof for general case "any real symmetric matrix A can be written as $A = VDV^{\top}$ " is SKIPPED.

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Instructor)

One sentence summary:

We learned eigenbasis and spectral decomposition.

Detailed summary:

- i) For some matrices, there are *n* eigenvectors that form a basis, called eigenbasis.
- Fact: Eigenbasis may or may NOT exist, for a given matrix.
- ii) Eigenvalue decomposition (特征值分解), or spectral decomposition.

A real symmetric matrix A can be written as

$$A = VDV^{\mathsf{T}} = \sum_{j=1}^{n} \lambda_j v_j v_j^{\mathsf{T}}$$

where