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Eigenvalue III: Spectral Decomposition
谱分解

µ



Today’s Lecture: Outline

Main topic: Spectral Theorem

1. Eigenbasis

2.  Spectral Theorem  



Today’s Lecture: Learning Goals

A:er the lecture, you should be able to

1. Provide an example where eigenvectors do not form a basis

2. Describe the spectral decomposiEon and related properEes

3. Explain the main proof steps of spectral decomposiEon



Review



Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors)

 is not an eigenvectorx  is an eigenvectorx

Let  be a square matrix.A ∈ ℂn×n

If there exists a scalar  (  or ) and a nonzero vector  such that 
, 

then  is called a (real or complex) eigenvalue and  is called an 
eigenvector with respect to (or associated with; corresponding to) .

λ ∈ ℝ ℂ x
Ax = λx

λ x
λ

:= set of complex numbersℂ



General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve  and get  roots  det(A − λI) = 0 n λ1, …, λn

Step 2: For each , find the eigenspace λi Null(λiI − A)

Any nonzero vector in  is an eigenvector 
corresponding to 

Null(λiI − A)
λi

eigenvectors of  with 
respect to the eigenvalue 

A
λi{ } ⋃ {0}Null(λiI − A) =

Solving single-var polynomial.

Solving up to  linear systems.n



Eigenvalues and Eigenvectors

Any  (no maSer real or complex) matrix  has exactly   
complex eigenvalues (counEng mulEplicity).

n × n A n
Fact:

Here, mulEplicity of  is the power  of the term  in the 

decomposiEon of the characterisEc polynomial .

λj k (λ − λj)
pA(λ) = (−1)nΠn

j=1(λ − λj)kj

CharacterisEc polynomial  is a degree-  
polynomial with coefficient of  being 

pA(λ) = det(A − λI) n
λn (−1)n .



Part 1  Eigenbasis



MulFset [多重集]
MulFset  A mulEset is a modificaEon of the concept of a set that, unlike a set, allows for 
mulEple instances for each of it.  
Can use #{ } to denote a mulEset; though some ppl just use { }a1, a2, … a1, a2, …

Multiplicity: If an element appears  times in the multiset, then the multiplicity of the element in the multiset is k k .



MulFset [多重集]
MulFset  A mulEset is a modificaEon of the concept of a set that, unlike a set, allows for 
mulEple instances for each of it.  
Can use #{ } to denote a mulEset; though some ppl just use { }a1, a2, … a1, a2, …

Multiplicity: If an element appears  times in the multiset, then the multiplicity of the element in the multiset is k k .

In the multiset #{a, a, b}, the element a has multiplicity 2, and b has multiplicity 1.

In the multiset #{a, a, a, b, b, b}, a and b both have multiplicity 3.

The set {a, b} contains only elements a and b. 
Each having multiplicity 1 when {a, b} is seen as a multiset #{a, a, a, b, b, b}.

Examples:

Order does not matter: #{a, a, b} and #{a, b, a} denote the same multiset.
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Linear Space over Complex Domain

Recall: 
Definition of Linear space over . ℝ

A linear space over  is defined in a similar way: 
just change  to

ℂ
∈ ℝ ∈ ℂ

For completeness, we state the full definiEon in the next slide.
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Reading: Def: Linear Space over Complex Domain

Definition 23.3 (Linear space over )
Suppose V is a set associated with two operations: 
(i) Addition “+”:  
(ii) Scalar multiplication: 

ℂ
u + v ∈ V, ∀u ∈ V, v ∈ V .

αu ∈ V, ∀α ∈ ℂ, u ∈ V .
V is called a linear space over  if the 8 axiom axioms hold:ℂ

,ℂ

,ℂ
,ℂ



Space ℂ

Complex number wriSen as  where z = a + bi, i = −1

Complex conjugate of  [ 的共轭复数] is  x x z̄ =

Modulus of  [ 的模] is                        [using ]                            
                                                     =                        [using ]                     

x x |z | = a, b
z, z̄

A complex number  where x = a + bi, i = −1
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Space ℂn

A few statements about the complex vector space. 
 is sEll a basis of . 

  and  are linearly __________. 

{e1, e2, e3} ℂ3

[1
i] [ i

−1]

If , then  z = (z1, …, zn) ∈ ℂn z̄⊤z = |z1 |2 + … + |zn |2

Corollary:        iff     z = 0 z̄⊤z = 0.





How Many Linearly Independent Eigenvectors?

Judgement:  
Statement 1: An  matrix always has  linearly independent 
eigenvectors.

n × n n





Example 1: Do Eigenvectors Form a Basis?

Example

Two eigenvalues  and λ1 = 4 λ2 = 3
(1). For ,λ1 = 4

For any _____,  is an eigenvectorx = t [2
1] with respect to ______

For any _____,  is an eigenvectorx = t [ 1
−3] with respect to ____

(2). For ,λ2 = 3

Do  and  form a basis of ?[2
1] [ 1

−3] ℝ2



Example

Two eigenvalues  and λ1 = i λ2 = − i

(1). For ,λ1 = i
For any ___,  is an eigenvectorx = t [1

i] with respect to ______

For any ___,  is an eigenvectorx = t [ 1
−i] with respect to ____

(2). For ,λ2 = − i

[ 0 1
−1 0]

Example 2: Do Eigenvectors Form a Basis?

Do  and  form a basis of ?[1
i] [ 1

−i] ℂ2



How Many Linearly Independent Eigenvectors?

Judgement:  
Statement 1: An  matrix always has  linearly independent 
eigenvectors.

n × n n

You may ask: real or complex?
Judgement:  
Statement 2: An  real matrix always has  linearly independent 
real eigenvectors.

n × n n

Judgement:  
Statement 3: An  real matrix always has  linearly independent 
complex eigenvectors (note: including real eigenvectors).

n × n n



Example 3: Do Eigenvectors Form a Basis?

Example

Eigenvalues are

[1 1
0 1]

Eigenvectors are

Can you find two eigenvectors that form a basis of ?ℝ2



Eigenbasis may NOT exist

[1 1
1 0]Fact: The (complex) eigenvectors of do NOT form a basis.

Eigenspace dimension dim(N( )) =1. 
MulEplicity is 2.  

λ1I − A



Do Eigenvectors Form a Basis?

Eigenbasis:  
A set of eigenvectors that can form a basis of whole space.

Fact:  
For certain  matrices, the eigenbasis does NOT exist. n × n

i.e. can find at most ______ independent eigenvectors of .A



Part II Spectral 
DecomposiEon
Sec. 6.4





Orthonormal Eigenbasis

Claim 23.1  [orthonormal eigenbasis ==> symmetric matrix] 
Eigenvectors of a real matrix  can form an orthonormal basis  

<==>  where  is a real diagonal matrix,  is a real orthogonal matrix.

A
A = VDV⊤ D V

What about the other direcEon?

Corollary: If a real matrix A has an orthonormal eigenbasis,  
                   then A is a symmetric matrix.









Spectral Theorem

Theorem 23.1 [Spectral Theorem]  
Any real symmetric matrix  can be wriSen as  

                                                       (*)      
where  is a real diagonal matrix,  is a real orthogonal matrix.               

A
A = VDV⊤

D V

(*) and (**): Eigenvalue decomposiEon (EVD) or eigendecomposiEon of A. 

Vector form [pracFce]:

(**)

[column & row form]A = VDV⊤ =

[outer product]







ProperFes of Real Symmetric Matrices

Property 1: All eigenvalues are real.

Property 2: All eigenvectors are real.

Property 3: Eigenvectors can form 
 an orthonormal basis of ℝn .

Together:  can be wriSen asA

Real Symmetric Matrices General Matrices
Eigenvalues can be _____.

Eigenvectors can be _____.

Eigenvectors __________ 
basis of _____.

A can be wriSen as



Geometry View



Proof of Spectral Theorem

The full proof of spectral theorem is skipped here 
 (It requires a bit trick and inducEon)

Next, we only prove the case for disEnct eigenvalues.  

  only prove the case for disEnct eigenvalues.  

  only prove the case for disEnct eigenvalues.  



Proof of EVD for DisFnct Eigenvalues (I): Real Eigenvalues

Property 23.1: Under Assump. 23.1, all eigenvalues are real.

Suppose ,  
where . 

Av = λv
λ ∈ ℂ, v ∈ ℂn×1\{0}

Want to prove: λ ∈ ℝ .

AssumpFon 23.1:  and A ∈ ℝn×n A = A⊤ .

What we know:
Analysis:



Proof of EVD for DisFnct Eigenvalues (I): Real Eigenvalues

Suppose , where . Av = λv λ ∈ ℂ, v ∈ ℂn×1 Want to prove: λ ∈ ℝ .
Proof of Property 23.1:

Use two ways to compute v⊤Av .

First way: v̄⊤Av =

Second way: v̄⊤Av =

AssumpFon 23.1:  and A ∈ ℝn×n A = A⊤ .



Proof of EVD for DisFnct Eigenvalues (I): Real Eigenvectors

AssumpFon 23.1 (1st part): .A ∈ ℝn×n

Property 23.2: For any eigenvalue of A, there exists a real 
eigenvector with respect to this eigenvalue.

Proof of Property 23.2:
Suppose , where . Av = λv λ ∈ ℝ, v ∈ ℂn×1\{0}



Proof of EVD for DisFnct Eigenvalues (III):Orthogonality

Property 23.3:  Under AssumpEon 23.1,  real eigenvectors 
corresponding to different eigenvalues are orthogonal.

AssumpFon 23.1:  and A ∈ ℝn×n A = A⊤ .



Proof of EVD for DisFnct Eigenvalues (III):Orthogonality

Claim  Under AssumpEon 23.1,  eigenvectors corresponding to 
different eigenvalues are orthogonal.

AssumpFon 23.1:  and A ∈ ℝn×n A = A⊤ .

Proof: Suppose Check  Ax1 = λ1x1, Ax2 = λ2x2, λ1 ≠ λ2 . x⊤
1 Ax2 .



AssumpFon 23.1:  and A ∈ ℝn×n A = A⊤ .

EVD for DisFnct Eigenvalues

AssumpFon 23.2: all eigenvalues of  are disEnct.A ∈ ℝn×n

The proof for general case “any real symmetric matrix A can be wriSen as 
“ is SKIPPED.A = VDV⊤

Proof of Thm 23.1 under AssumpFon 23.2: (Combining Property 23.1,23.2, 23.3)

So far, we have proved Thm 23.1 for disEnct eigenvalues.  

By Claim 23.1 

Recall: an orthonormal set 
with size  is an orthonormal 

basis of .
n

ℝn

All  eigenvalues 
  of A are real 

n
λ1, …, λn

eigenvectors w.r.t. 
  can be realλ1, …, λn

and orthogonal
can pick orthonormal set 
of eigenvectors v1, …, vn

can pick orthonormal basis 
consisEng of eigenvectors 

v1, …, vn

, where 
  is an orthogonal matrix,  

 is diagonal matrix.

A = VDV⊤

V
D

AssumpEon 23.2 
+ Property 23.3

Property 23.2

Property 23.1

(Not part of Thm 
23.1, but useful)



Summary Today (Write Your Own)

One sentence summary:

Detailed summary:



Summary Today (Instructor)

One sentence summary:

Detailed summary:

We learned eigenbasis and spectral decomposiEon.

i) For some matrices, there are  eigenvectors that form a basis, 
called eigenbasis. 

Fact: Eigenbasis may or may NOT exist, for a given matrix.

n

ii) Eigenvalue decomposiEon (特征值分解), or spectral decomposiEon. 
A real symmetric matrix  can be wriSen as A

A = VDV⊤ =
n

∑
j=1

λjvjv⊤
j

where 


