Lecture 23

Eigenvalue II: Spectral Decomposition $\overline{||}$

谱分解

Instructor: Ruoyu Sun

Main topic: Spectral Theorem

- 1. Eigenbasis
- 2. Spectral Theorem

After the lecture, you should be able to

- 1. Provide an example where eigenvectors do not form a basis
- 2. Describe the spectral decomposition and related properties
- 3. Explain the main proof steps of spectral decomposition

Review

Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

If there exists a scalar λ ($\in \mathbb{R}$ or \mathbb{C}) and a **nonzero** vector x such that $Ax = \lambda x$,

then λ is called a (real or complex) eigenvalue and x is called an **eigenvector** with respect to (or associated with; corresponding to) λ .

General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve $\det(A - \lambda I) = 0$ and get *n* roots $\lambda_1, \ldots, \lambda_n$ Solving single-var polynomial.

Step 2: For each λ_i , find the eigenspace $\text{Null}(\lambda_i I - A)$ Solving up to *n* linear systems. $A \chi_i = \lambda \chi_i$

Any nonzero vector in $\frac{\text{Null}(\lambda_i I - A)}{}$ is an eigenvector corresponding to *λi*

eigenvectors of A with respect to the eigenvalue *A* $\left(\frac{\partial \mathcal{L}}{\partial \mathcal{L}} \mathbf{A} \mathbf{B}\right)$ and $\left(\frac{\partial \mathcal{L}}{\partial \mathbf{A}} \mathbf{B} \mathbf{B} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf$ $\overline{I-A}$ \rightarrow $\left\{ \begin{array}{c} \text{eigenvectors of }A \text{ with } 0, \end{array} \right\}$ $\bigcup \left\{ \begin{array}{c} 0 \end{array} \right\}$

$$
\text{det}(\lambda \mathcal{I} - A)
$$

Characteristic polynomial $p_A(\lambda) = \det(A - \lambda I)$ is a degree- n polynomial with coefficient of λ^n being $(-1)^n$.

Fact:

Any $n \times n$ (no matter real or complex) matrix A has exactly n **complex eigenvalues** (counting multiplicity).

Here, multiplicity of λ_j is the power k of the term $(\lambda - \lambda_j)$ in the decomposition of the characteristic polynomial $p_A(\lambda) = (-1)^n \prod_{j=1}^n (\lambda - \lambda_j)^{k_j}$.

$$
\mathbf{a}x^{2}+bx+c = \mathbf{a}(x-x_{1})(x-x_{2})
$$

$$
x_{1}x_{2} = \mathbf{a}(x-x_{1})^{2}
$$

Part 1 Eigenbasis

MulFset [多重集]

Multiset A multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of it.

Can use #{*a* } to denote a mulEset; though some ppl just use { } 1, *a*2, … *a*1, *a*2, …

Multiplicity: If an element appears k times in the multiset, then the **multiplicity** of the element in the multiset is k .

MulFset [多重集]

Multiset A multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of it. **Multiset** A multiset is a modification of the concept of a set that, unlike
multiple instances for each of it.
Can use $\# \{a_1, a_2, \ldots\}$ to denote a multiset; though some ppl just use $\{a_1$
Multiplicity: If an elemen

Can use $\# \{a_1, a_2, \ldots\}$ to denote a multiset; though some ppl just use $\{a_1, a_2, \ldots\}$

Multiplicity: If an element appears *k* times in the multiset, then the **multiplicity** of the element in the multiset is *k* .

Examples:

In the multiset $\{H\{a, a, b\}\}$ the element *a* has multiplicity 2, and *b* has multiplicity 1.

In the multiset $\#{a, a, a, b, b, b}$, *a* and *b* both have multiplicity 3.

The set {*a*, *b*} contains only elements *a* and *b.* Each having multiplicity 1 when $\{a, b\}$ is seen as a multiset $\# \{a, a, a, b, b, b\}$.

Order does not matter: $\#{a, a, b}$ and $\#{a, b, a}$ denote the same multiset.

Linear Space over Complex Domain

Reading: Def: Linear Space over Complex Domain

Definition 23.3 (Linear space over \mathbb{C})

Suppose V is a set associated with two operations: (i) Addition "+": $\mathbf{u} + \mathbf{v} \in V$, $\forall \mathbf{u} \in V$, $\mathbf{v} \in V$. (ii) Scalar multiplication: $\alpha \mathbf{u} \in V$, $\forall \alpha \in \mathbb{C}, \mathbf{u} \in V$.

V is called a linear space over $\mathbb C$ if the 8 axiom axioms hold:

$$
(A1) u + v = v + u, \forall u, v \in V.
$$

$$
(A2) \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{w}, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V.
$$

(A3) There exists a element **0** s.t. $\mathbf{u} + \mathbf{0} = \mathbf{u}$, $\forall \mathbf{u} \in V$.

\n- (A4) If
$$
\mathbf{u} \in V
$$
, then there exists $-\mathbf{u} = (-1)\mathbf{u}$, s.t. $\mathbf{u} + (-\mathbf{u}) = 0$.
\n- (A5) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$, $\forall \alpha \in \mathbb{C}$, \mathbf{u} , $\mathbf{v} \in V$.
\n- (A6) $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$, $\forall \alpha$, $\beta \in \mathbb{C}$, $\mathbf{u} \in V$.
\n- (A7) $\alpha(\beta \mathbf{u}) = (\alpha \beta)\mathbf{u}$, $\forall \alpha$, $\beta \in \mathbb{C}$, $\mathbf{u} \in V$.
\n- (A8) $1\mathbf{u} = \mathbf{u}$.
\n

Space C
\nComplex number written as
$$
z = a + bi
$$
, where $i = \sqrt{-1}$
\nComplex conjugate of x [x \uparrow \up

Complex conjugate of *x* [*x*的共軸皇数] is
$$
\bar{z} = \mathbf{0} - \mathbf{0}
$$

\nModulus of **3** [2²th] 4² is $|z| = \sqrt{a^2 + b^2}$ [using *a*, *b*]
\n
$$
= \frac{2 \cdot 2}{2}
$$
 [using *z*, *z*]

A complex number $x = a + bi$, where $i = \sqrt{-1}$ is ^a rel nawber $\oint f = 0 \qquad \text{if} \qquad \chi =$ $\overline{\chi}$

A few statements about the complex vector space.

$$
\{e_1, e_2, e_3\} \text{ is still a basis of } \begin{bmatrix} 3 \\ -3 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 \\ i \end{bmatrix} \text{ and } \begin{bmatrix} i \\ -1 \end{bmatrix} \text{ are linearly } \text{ dephedent}
$$
\n
$$
\begin{bmatrix} \frac{2}{t_1} \\ \frac{1}{t_2} \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 1 \\ i \end{bmatrix} \cdot \hat{i} = \begin{bmatrix} 1 \\ i \end{bmatrix} \cdot \hat{i} = \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} \text{If } z = (z_1, ..., z_n) \in \mathbb{C}^n, \text{ then } |\overline{z}^\top z = \sqrt{|z_1|^2 + ... + |z_n|^2}
$$
\n
$$
\overline{z}^\top z = \begin{bmatrix} \overline{z_1}, -, \overline{z_n} \end{bmatrix} \begin{bmatrix} z_1 \\ \frac{1}{2n} \end{bmatrix} = \sum_{i} z_i z_i + \sum_{i} \overline{z_n} \overline{z} = (z_1)^2 + \sum_{i} |z_i|^2
$$
\n
$$
\begin{array}{c} \text{Corollary: } z = 0 \text{ iff } (\overline{z_1}z) = 0. \end{array} \qquad \begin{array}{c} \text{Indgout, } z \in \mathbb{C}^n, \\ \overline{z} \neq 0 \text{ } \end{array}
$$
\n
$$
\begin{array}{c} \text{Foleo} \end{array}
$$

How Many Linearly Independent Eigenvectors?

Example 1: Do Eigenvectors Form a Basis?

Example 2: Do Eigenvectors Form a Basis?

How Many Linearly Independent Eigenvectors?

Judgement:

Statement 1: An $n \times n$ matrix always has n linearly independent eigenvectors.

```
You may ask: real or complex?
```
Judgement:

Statement 2: An $n \times n$ real matrix always has n linearly independent

real eigenvectors.

Judgement:

Statement 3: An $n \times n$ real matrix always has n linearly independent complex eigenvectors (note: including real eigenvectors).

False (by example 2, no veel eigenvectors

Example 3: Do Eigenvectors Form a Basis?

Example

\n
$$
\begin{aligned}\n\text{Eigenvalues are} & \text{dist}(\lambda \mathbf{I} - A) = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0 \\
\text{disenvectors are} & \text{dist}(\lambda \mathbf{I} - A) = \begin{pmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \Leftrightarrow x_2 = 0 \\
\text{int you find two eigenvectors that form a basis of } \mathbb{R}^2 : \mathbb{R}^2.\n\end{aligned}
$$
\nCan you find two eigenvectors that form a basis of $\mathbb{R}^2 : \mathbb{R}^2$.

\n
$$
\begin{array}{rcl}\n\text{Can not span} & \text{dist}(\lambda \mathbf{I} - A) = \int_0^1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \{ 1 \in \mathbb{C} \}.\n\end{aligned}
$$
\n
$$
\begin{array}{rcl}\n\text{Can point span} & \text{dist}(\lambda \mathbf{I} - A) = \int_0^1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \{ 1 \in \mathbb{C} \}.\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Can point span} & \text{dist}(\lambda \mathbf{I} - A) = \int_0^1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \{ 1 \in \mathbb{C} \}.\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\text{Can point span} & \text{dist}(\lambda \mathbf{I} - A) = \int_0^1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \{ 1 \in \mathbb{C} \}.\n\end{array}
$$

Eigenbasis may NOT exist

Eigenspace dimension dim($N(\lambda_1 I - A)$) =1. Multiplicity is 2.

Do Eigenvectors Form a Basis?

Part II Spectral Decomposition

Sec. 6.4for real symmetric motrices.

Lemma 23.1 If
$$
A v_i = \lambda_1 v_0 \rightarrow \lambda_2 u_0
$$

\nwhen $A \in C^{n\times n}$, $v_j \in C^{n\times n}$, $\lambda_j \in C$. $j=1,3,4,6$
\nthen $A V = V D$, where $V = [v_0,3, v_0] \in C^{n\times n}$, $D = d$ log $(\lambda_0,3, \lambda_0)$.
\n*Proof*: $A V = A [v_1,3, 0, 0]$
\n $= [A v_1, 3, 0, 0]$
\n $= [v_0, 3, v_0] \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ 0 & \lambda_3 & \lambda_4 \end{bmatrix}$
\n $= V D$. \square .
\n**Lemma 23.2** If $A V = V D$, where $V = [v_0, 3, v_0] \in C^{n\times n}$, $D = d$ log $(\lambda_0, 3, \lambda_0)$,
\nthen $A v_j = \lambda_j v_j$, $j=1,3,3, n$.

Prof: Reverse the chain of equalities in (**).

Orthonormal Eigenbasis

Claim 23.1 [orthonormal eigenbasis ==> symmetric matrix] Eigenvectors of a real matrix A can form an orthonormal basis $\lambda = > A = VDV^\top$ where D is a real diagonal matrix, V is a real orthogonal matrix. $Proof: " \implies"$ Suppose eigenvector v_1 , v_n form on orthonormal basis of R^n , then $V = [v_1, ..., v_n]$ is an orthonormal matrix. Suppose $A v_j = \lambda_j v_j$, where $\lambda_j \in \mathbb{C}$; then $\lambda_j \in \mathbb{R}$ (since $A, v_j \in \mathbb{R}$) R_y Lemma 23.1, we have $AV=VD$, where $D=diag(\lambda_1-\lambda_2)$ Then $A = VDV^{-1} = VDV^{-1}$. "=" suppose $V = [v_1, ..., v_n]$, $D = deg(\lambda_1, ..., \lambda_n)$, Then $\{v_j\}$'s form an orthonormol bess.
By Lemma 23.2, we have $A v_j = \lambda_j^2 v_j$, $j = 1, ..., n$. Thus $\{v_j\}$'s are eigenvectors) =) eigenverson of A con form
an orthonormol basis. **Corollary**: If a real matrix A has an orthonormal eigenbasis, then A is a symmetric matrix.

What about the other direction?

$$
Proof\ Sketch\ of\ Chm 23.1.
$$
\n
$$
ForA $U_i = \lambda_i V_j$, $V_j \in \{1, ..., n\}$
$$
\n
$$
\Rightarrow AV = VD
$$
\n
$$
A V = W
$$
\n
$$
A V = W
$$
\n
$$
A V = W
$$
\n
$$
\Rightarrow A = VDU^{-1} = \underbrace{VDV^{-1}}_{\text{max}}
$$

$$
\frac{\text{Part of Corollary}}{A^T} = (UDU^T)^T = (U^T)^TDU^T
$$

$$
= UDU^T = A
$$

 \mathbf{I}

 $A = VV^T$ N Syreton Since $A^T = (U^T)^T U^T$. $UV^T = A$. A = VDV is also symmetre $i.f.Dvsdiponal)$

 $A.\left[\begin{matrix} \lambda_{1} & \ & \lambda_{2} \end{matrix}\right]$: maltiply j -th column

Spectral Theorem

Theorem 23.1 [Spectral Theorem]

Any real symmetric matrix \overline{A} can be written as

$$
A = VDV^\top \quad (*)
$$

where D is a real diagonal matrix, V is a real orthogonal matrix.

Vector form [practice]:
\n
$$
A = VDV^{T} = \begin{bmatrix} V_{12} - V_{13} \end{bmatrix} \begin{bmatrix} \lambda_{12} & 0 \\ 0 & \lambda_{13} \end{bmatrix} \begin{bmatrix} V_{11}^{T} \\ V_{21}^{T} \end{bmatrix} \begin{bmatrix} \text{column & row form} \\ \text{lower product} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \lambda_{1} V_{12} - \lambda_{12} V_{13} \end{bmatrix} \begin{bmatrix} V_{11}^{T} \\ V_{21}^{T} \end{bmatrix} \begin{bmatrix} \text{outer product} \\ \text{outer product} \end{bmatrix}
$$
\n
$$
= \lambda_{1} V_{1} U_{1}^{T} + \lambda_{12} V_{11} V_{12} = \begin{bmatrix} \sum_{i=1}^{n} \lambda_{i} V_{1} V_{1}^{T} \\ V_{21} V_{21}^{T} \end{bmatrix}.
$$
\n
$$
(*) and (**): Eigenvalue decomposition (EVD) or eigendecomposition of A.
$$

 $A\nu = \lambda y$ (x)
 $V = [u, v, w]$ v; as eigenents
 $V = du$ iog $(\lambda, -\lambda_n)$, λ_j 's are eigenents

Remark on Vector Form of EVD

$$
Matrix
$$
 product $(Let 5-6)$.
\n $AB = \sum_{j=1}^{n} A_j b_j$ (sum of outer products)

$$
M_{i}d\textrm{-term } P^{\textrm{Xam}}.
$$
\n
$$
E^{\textrm{P}}P^{\textrm{Yas}} \cdot B B^{\textrm{T}} = I \underset{\underset{\text{v}_{\textrm{A}}^{\textrm{T}}}{\mathcal{N}}}{\mathcal{D}} \text{Gamma } P^{\textrm{Wm}} \quad \textrm{form } B^{\textrm{T}}[V, -N)
$$
\n
$$
I = BB^{\textrm{T}} = \left(\overline{U_{\textrm{A}} - \mu_{\textrm{A}}}\right) \left(\frac{V_{\textrm{A}}^{\textrm{T}}}{V_{\textrm{A}}^{\textrm{T}}}\right) = \sum_{\textrm{J}}^{n} V_{\textrm{J}} V_{\textrm{J}}^{\textrm{T}},
$$

$$
Here: A=VDV^{T}=\sum_{j=1}^{A}\lambda_{j}V_{j}V_{j}^{T}
$$
, (weighted sum
of outer products)

Method 2
\n $\begin{aligned}\n &\text{if } A = \sum_{j=1}^{n} \lambda_{j} U_{j} U_{j}^{\top}, \text{ and } (V_{j}^{(s)}) \text{ orthonond set,} \\ &\text{if } A = \sum_{j=1}^{n} \lambda_{j} U_{j} U_{j}^{\top}, \text{ and } (V_{j} \perp V_{k}, V_{j}^{*k}) \\ &\text{then } (A \vee_{j} = \lambda_{j} V_{j}, \text{ } (V_{j} \perp V_{k}, V_{k}^{*k})\n \end{aligned}$ \n
\n $\begin{aligned}\n &\text{if } A \vee_{j} = (\lambda_{1} V_{j} V_{j}^{\top} + \lambda_{2} V_{k} U_{k}^{\top}) \cdot V_{j} \\ &\text{if } A \vee_{j} = \lambda_{1} V_{j} U_{j}^{\top} U_{j} + \lambda_{2} V_{k} U_{k}^{\top} V_{j} \\ &\text{if } A \vee_{j} = \lambda_{j} V_{j} + 0 + \lambda_{j} V_{k} U_{k}^{\top} V_{j}\n \end{aligned}$ \n

Properties of Real Symmetric Matrices

Real Symmetric Matrices 6. General Matrices

Property 1: All eigenvalues are real.

Property 2: All eigenvectors are real. (nove vigorously, can be real)

Property 3: Eigenvectors can form an orthonormal basis of ℝ*ⁿ* . $(w \mathbb{C}^r)$

Together: A can be written as

$$
A = UDU^{\top} = \frac{1}{J} \lambda_j v_j v_j^{\top}
$$

Geometry View

Previons (ectures)
Pous {e,e,] $\bigwedge_{\mathcal{A}} \bigwedge_{\mathcal{A}} \mathcal{L}_{2}$ $A_{\mathbf{z}_1}$ shope of tiles change Hero, For symmetre $A \in \mathbb{R}^{n \times n}$. $\{\theta_{r}\}$ $\{w_{1}, v_{2}\}$ $\sqrt{2}$ \mathbf{V} Shape alses not change (too much)
directions stay.
Ax = (v_1, v_2) ($\lambda_i x_1, x_2$). $\chi = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} (\chi_1, \chi_2)$

The full proof of spectral theorem is skipped here (It requires a bit trick and induction)

 $\lambda_j \neq \lambda_k$, Vj $\neq k$,

Next, we only prove the case for distinct eigenvalues.

only prove the case for distinct eigenvalues.

only prove the case for distinct eigenvalues.

Proof of EVD for DisFnct Eigenvalues (I): Real Eigenvalues

Proof of EVD for Distinct Eigenvalues (I): Real Eigenvalues

Assumption 23.1:

\n
$$
A \in \mathbb{R}^{n \times n} \text{ and } A = A^{\top} \cdot \underbrace{\text{bad}}_{\mathcal{U}} \overline{V}^{\top} V \supseteq 0 \quad \text{iff} \quad \nu \geq 0 - \text{Proof of Property 23.1:}
$$
\n
$$
\text{Suppose } Av = \lambda v, \text{ where } \lambda \in \mathbb{C}, v \in \mathbb{C}^{n \times 1}. \text{ What to prove: } \lambda \in \mathbb{R}.
$$
\nUse two ways to compute

\n
$$
\overline{V}^{\top}Av = \overline{V}^{\top}(\overline{A} \cdot \mathbf{U}) = \overline{V}^{\top} \cdot \lambda \cdot \mathbf{U} = \lambda \overline{V}^{\top}V
$$
\nSecond way:

\n
$$
\overline{v}^{\top}Av = (\overline{v}^{\top}A) \cdot \nu = (\overline{v}^{\top}A)^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} = (\overline{A} \cdot \overline{v})^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} = (\overline{A} \cdot \overline{v})^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} = (\overline{A} \cdot \overline{v})^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} \supseteq (\overline{A} \cdot \overline{v})^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} \supseteq (\overline{A} \cdot \overline{v})^{\top} \cdot \nu
$$
\n
$$
\overline{S}^{\text{prime}} \supseteq \overline{S}^{\top} \cdot \overline{V}^{\top} \cdot \lambda \cdot \sqrt{C} \cdot \lambda \cdot \sqrt{C} \cdot \lambda
$$

Proof of EVD for DisFnct Eigenvalues (I): Real Eigenvectors

Assumption 23.1 (1st part): $A \in \mathbb{R}^{n \times n}$. Property 23.2: For any eigenvalue of A, there exists a real eigenvector with respect to this eigenvalue. **Proof of Property 23.2:** $\textsf{Suppose } A\mathbf{v} = \emptyset$, where $\lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{C}^{n \times 1} \setminus \{ \mathbf{0} \}.$ Suppor $v = x + y \cdot i$,
where $x, y \in \mathbb{R}^{n \times 1}$, one of $x, y \neq 0$, 1) $A(x+yi)=\lambda(x+yi)$ $\Rightarrow \quad \underbrace{A x + A y \cdot i}_{\downarrow} = \lambda x + \lambda y \cdot i'$ DQQ $\iff Ax = \lambda x, Ay = \lambda y. Q$ => One of xiy shold be eigenvent

Proof of EVD for Distinct Eigenvalues (III): Orthogonality

Assumption 23.1: $A \in \mathbb{R}^{n \times n}$ and $A = A^{\top}$.

Property 23.3: Under Assumption 23.1, real eigenvectors corresponding to different eigenvalues are orthogonal.

Proof of EVD for Distinct Eigenvalues (III): Orthogonality

Assumption 23.1:
$$
A \in \mathbb{R}^{n \times n}
$$
 and $A = (A^T)$

\n**Property 23.3** Under Assumption 23.1, eigenvectors corresponding to different eigenvalues are orthogonal.

\n**Proof:** Suppose $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$. Check $x_1^T A x_2$. M and M is a function of \mathbb{R}^n and $\lambda_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$. Check $x_1^T A x_2$. M and M is a function of \mathbb{R}^n and λ_2 .

\n**Example 24.2**

\n**Example 25.3**

\n**Example 26.4**

\n**Proof:** Suppose $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$. Check $x_1^T A x_2$. M and M is a function of \mathbb{R}^n and λ_2 .

\n**Example 27.4**

\n**Example 28.5**

\n**Proof:** Suppose $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$. Check $x_1^T A x_2$. M and M is a function of \mathbb{R}^n and λ_2 . The equation $\lambda_1 \neq \lambda_2$ is a function of \mathbb{R}^n and $\lambda_1 \neq \lambda_2$. The equation $\lambda_1 \neq \lambda_2$ is a function of \mathbb{R}^n and $\lambda_2 \neq \lambda_1 \neq \lambda_2$. The equation $\lambda_1 \neq \lambda_2$ is a function of \mathbb{R}^n and $\lambda_1 \neq \lambda_2$. The equation $\lambda_1 \neq$

EVD for Distinct Eigenvalues

Assumption 23.1: $A \in \mathbb{R}^{n \times n}$ and $A = A^{\top}$. **Assumption 23.2**: all eigenvalues of $A \in \mathbb{R}^{n \times n}$ are distinct.

Proof of Thm 23.1 under Assumption 23.2: (Combining Property 23.1,23.2, 23.3)

So far, we have proved Thm 23.1 for distinct eigenvalues.

The proof for general case "any real symmetric matrix A can be written as $A = VDV^{\top}$ " is SKIPPED.

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Instructor)

One sentence summary:

We learned eigenbasis and spectral decomposition.

Detailed summary:

- i) For some matrices, there are n eigenvectors that form a basis, called eigenbasis.
- **Fact**: Eigenbasis may or may NOT exist, for a given matrix.
- ii) Eigenvalue decomposition (特征值分解), or spectral decomposition.

A real symmetric matrix A can be written as *n*

$$
A = VDV^{\mathsf{T}} = \sum_{j=1}^{n} \lambda_j v_j v_j^{\mathsf{T}}
$$

where