Lecture 24

Eigenvalue III: Properties

Instructor: Ruoyu Sun

Today's Lecture: Outline and Learning Goals

Main topic: Properties

- 1. Properties: Sum, Product of Eigenvalues
 - 2. Similar matrices

After the lecture, you should be able to

- 1. Prove and apply a few properties of eigenvalues
- 2. Tell the property of similar matrices

Epidemic [流行病]

Review

for people usted.

Q1: Any real square matrix A can be written as $A = SDS^{T}$ where D is a diagonal matrix, and S is an orthogonal matrix. False $SDS^{T} + Symmetric$, if $A + A + SDS^{T}$. Q2: If there are n eigenvectors of a real matrix A that can form an orthonormal basis of \mathbb{R}^{n} , then A is a symmetric matrix. True. (from previous (extrue) Q3: For any real square matrix A, we can find a diagonal matrix D

(possibly complex) and a square matrix V (possibly complex), such

that AV = VD.

Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

If there exists a scalar λ ($\in \mathbb{R}$ or \mathbb{C}) and a nonzero vector x such that $Ax = \lambda x$,

then λ is called a (real or complex) **eigenvalue** and x is called an **eigenvector** with respect to (or associated with; corresponding to) λ .

General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve $det(A - \lambda I) = 0$ and get *n* roots $\lambda_1, ..., \lambda_n$ Solving single-var polynomial.

Step 2: For each λ_i , find the eigenspace $\text{Null}(\lambda_i I - A)$ Solving up to *n* linear systems.

Any nonzero vector in $\text{Null}(\lambda_i I - A)$ is an eigenvector corresponding to λ_i

$$\operatorname{Null}(\lambda_i I - A) = \left\{ \begin{array}{l} \operatorname{eigenvectors} \text{ of } A \text{ with} \\ \operatorname{respect} \text{ to the eigenvalue } \lambda_i \end{array} \right\} \bigcup \{0\}$$

Fact:

Any $n \times n$ (no matter real or complex) matrix A has n complex eigenvalues (counting multiplicity).

Characteristic polynomial $p_{\lambda}(A) = \det(A - \lambda I)$ has n roots.

Spectral Theorem

Theorem 23.1 [Spectral Theorem]

Any real symmetric matrix A can be written as

$$A = VDV^{\mathsf{T}} = \sum_{j=1}^{n} \lambda_j \mathbf{v}_j \mathbf{v}_j^{\mathsf{T}}.$$
 (*)

where $D = diag(\lambda_1, ..., \lambda_n)$ is a real diagonal matrix,

 $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is a real orthogonal matrix.

(*): Eigenvalue decomposition (EVD) or eigendecomposition of A.

Property 23.1: All eigenvalues are real.

Property 23.2: Eigenvectors can form an orthonormal basis of \mathbb{R}^n . (23.2a) Eigenvectors can form a basis of \mathbb{R}^n . (23.2b) Can pick an eigenbasis that is orthonormal set.

Part I Sum and Product of Eigenvalues

We will explore results on polynomials, to get some properties of eigenvalues.

Review of Middle School Results: Vieta's Theorem

Vieta's Theorem
$$(\exists x \notz v \notz)$$
.
If $ax^2 + bx + c = 0$ has two roots x_i, x_2
then $(x_i + x_2 = -\frac{b}{a}, x_i x_2 = \frac{c}{a})$
Con you prove it?

One way is to use root formula. $\chi_{1,2} = -\frac{b \pm \sqrt{b^2 - 44c}}{2a} \quad \chi_1 + \chi_2 = -\frac{b}{a}$ $\chi_1 + \chi_2 = -\frac{b}{a}$ What about 3rd order equation? $\chi_1 + \chi_2 + \delta \chi^2 + \delta \chi^2 + \delta \chi^2 + \delta \chi^2 = 0$ $\chi_1 + \chi_2 + \chi_3 = \gamma \quad \chi_1 + \chi_3 = \gamma$

For order 7,5 equations, root formulas do NOT exist

Better Proof

Claim If
$$0x^2 + bx + c = 0$$
 has two roots x_1, x_2 , $(a \neq 0)$
then $0x^2 + bx + c = 0(x - x_1)(x - x_2)$. O .
[This claim can be proved by showing $x - x_j$ is a factor of $0x^2 + bx + c$]

Proof Method 2 of Vieta's theorem for quadratic equation:

Express RHS as $(\chi^2 - (\chi_1 \chi_2) \times \chi \chi_1 \chi_2)$ $= \alpha \chi^2 - \alpha (\chi_{i+\chi_2}) \chi + \alpha \chi_{i}\chi_2 2$ Compare ____, get coefficients of LHS of D&R/HS of D

Vieta's Theorem: General Case

Viata's Theorem (deg-n case)
Suppose
$$f(x) = Q_n x^n + \dots + Q_i x + Q_0$$
 has n roots $(Q_n \neq 0)$
 x_1, x_2, \dots, x_n , then $\sum_{j=1}^{n} x_j = -\frac{Q_{n-1}}{Q_n}$.
 $\prod_{j=1}^{n} x_j = \frac{Q_0}{Q_n} (-1)^n$.
Droof of Vioto's theorem.

Proof of Vieta's theorem:

Express
$$f(x)$$
 as $f(x) = Q_n (X - X_1) (X - X_2) - (X - X_n)$.
= $Q_n (X^n - (X_1 + X_2 + \dots + X_n) X^{n-1} + \dots$

Compare
$$\underline{Overfield}_{j}$$
 get $--+(-i)^{n} X_{i} - X_{n}$
 $Coefficient of X^{n-1}: \quad a_{n-1} = -a_{n} (X_{i} + \cdots + X_{n})$
 $\Rightarrow \quad \sum_{j=n}^{n} X_{j} = -\frac{a_{n-1}}{a_{n}}$
 $Coefficient of X^{n} (1)_{x} \quad a_{n} = b_{n-1} (-i)^{n} X_{1} - X_{n} \Rightarrow \frac{a_{n}}{a_{n}} (-i)^{n}$

Lemma. If
$$X_{k}$$
 is a root of $f(x) = \sum_{j=0}^{n} 0_{j} X^{j}$,
the $f(x) = (x - \chi_{k}) \cdot h(x)$, where degree of $h(x) \leq n-1$.
Proof. Prove by induction. Assume the result holds for $n-1$.
Consider degree n .
 $f(x) = (x - \chi_{k}) \cdot h_{0}(x) + f_{1}(x)$
 $\int x = \chi_{k}$ $d_{ag} \leq n-1$
 $D = f(\chi_{k}) = f_{1}(\chi_{k})$.
By induction hypothesis. $f_{i}(x_{k}) = h_{i}(x) \cdot (x - \chi_{k})$,
Thus $f(x) = (x - \chi_{k}) (h_{0}(x) + h_{i}(x))$. Thus the result holds for n .

2nd Calculation of Coefficients of
$$p_A(\lambda)$$

Consider n=3 case: Write $A = (a_{ij})_{3\times3}$ (Deffs wheth of λ^2 , $\lambda^*(=i)$)
Use definition of determinant, to expand:
 $p_{\lambda}(A) = \det(A - \lambda I) = \int_{\Delta I} \begin{bmatrix} A_{(I} - \lambda & A_{i2} & A_{i3} \\ 0_{2i} & A_{22} - \lambda & A_{23} \\ A_{3i} & A_{32} & A_{3i} - \lambda \end{bmatrix}$
end term is
a poder of 5 arrows
wheth our fit in the
Some raw & column the contain $\lambda^2 = 1$ (Constant terms),
so we need a different method to compute vio [net page]

$$= \frac{(\text{Sum of eigenvolus})}{(-1)^{n-1}}$$

$$= \text{coefficient of } \lambda^2 \text{ in } \frac{p_{\lambda}(\lambda)}{(\lambda)}$$

$$= \text{coefficient of } \lambda^2 \text{ in }$$

$$\begin{pmatrix} (\lambda_{11} - \lambda)(\lambda_{22} - \lambda)(\alpha_{33} - \lambda) \\ = (-1)^3 \lambda^3 + \lambda^2 (\alpha_{11} + \alpha_{22} + \alpha_{33}) + \cdots \end{pmatrix}$$

$$= a_{11} + a_{22} + a_{33}$$

= sum of diagonal entres.

$$f(\lambda) = \Omega_0 + \Omega_1 \lambda + \dots + \Omega_n \lambda^{n-1}$$

$$f(0) = \Omega_0$$

 $p_{\lambda}(A) = \det(A - \lambda I)$ Roots are eigenvalues of A: $\lambda_1, \dots, \lambda_n$. $n = 3 \text{ case:} \quad d_{\mu} (A - \lambda I_3) = (\lambda - \lambda_1) (\lambda - \lambda_2) (\lambda - \lambda_3) - (-1)^3$ $||p_{\mu}|_{\lambda=0} \qquad ||p_{\mu}|_{\lambda=0}$

 $det(A) = \lambda_1 \lambda_2 \lambda_3$

n=3 case and General Expressions

 $p_{\lambda}(A) = \det(A - \lambda I)$ Roots are eigenvalues of A: $\lambda_1, \dots, \lambda_n$. n = 3 case:

= 5 case:

$$\lambda_1 + \lambda_2 + \lambda_3 = \sum_{j=1}^{3} a_{jj}$$

 $\lambda_1 \lambda_2 \lambda_3 = det(A)$

General *n* case:

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \sum_{j=1}^n \alpha_{jj}$$

$$\lambda_1 \lambda_2 - \dots \lambda_n = \det(A)$$

Summary of Derivation

0

How did we prove
$$\int_{j=1}^{2} j = \int_{j=1}^{2} a_{jj}$$
 and $\int_{j=1}^{2} \lambda_{j} = det(A)$?
D Fact: λ_{j} 's are roots of polynomial $p_{i}(A)$
Logic 2 $Z\lambda_{j} = \Sigma$ roots Vieta the retro of
 $Coefficients in p_{i}(A) = det(A-\lambda I)$
by definition of determinant.
Trick observe coeff rely on 1 term (coeff of λ^{2})
 σ 6 terms (coeff of 1)
This trick can save some time.
Percent I have the summary can be done by yourself.

Question:

What is the sum of eigenvalues?

Sum of Eigenvalues

Question:

What is the sum of eigenvalues?

1. Definition of Eigenvalues:

Proof

Eigenvalues of a matrix A are the solutions to the characteristic equation $det(A - \lambda I) = 0$, where λ represents an eigenvalue and I is the identity matrix of the same size as A.

2. Characteristic Polynomial:

The characteristic polynomial of A is given by $p(\lambda) = \det(A - \lambda I)$. For an $n \times n$ matrix, this polynomial is of degree n and can be written as $p(\lambda) = (-1)^n \lambda^n + c_{n-1}\lambda^{n-1} + \ldots + c_1\lambda + c_0$, where the coefficients c_i are functions of the entries of A.

3. Coefficient of λ^{n-1} in the Characteristic Polynomial:

By expanding $det(A - \lambda I)$, it can be shown that the coefficient c_{n-1} of λ^{n-1} is (up to a sign) the sum of the diagonal entries of A, which is the trace of A.

4. Sum of Roots of the Characteristic Polynomial:

According to Vieta's formulas, the sum of the roots of a polynomial (which are the eigenvalues in this case) is equal to the negation of the coefficient of the second-highest degree term of the polynomial divided by the leading coefficient. For the characteristic polynomial, this is $-c_{n-1}/(-1)^n$, which simplifies to the trace of A (since the leading coefficient is $(-1)^n$ for the λ^n term).

Remark: Proof trick "compute twice" 算两次

 $C_{n-1} = tr(A) \cdot (-1)^{n-1} - \cdots$

 $\sum_{j=1}^{n} \lambda_{j} = \frac{-C_{n-1}}{(-1)^{n}} = (-1)^{n-1}C_{n-1}$ = tr(A)

Therefore, the sum of the eigenvalues of matrix A is equal to the trace of A. This proof is quite abstract and involves a good understanding of matrix algebra, determinants, and polynomial theory.

Question:

What is the product of eigenvalues?

Proposition 24. (Product of Eigenvalues) Let $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) be a square matrix. $\prod_{i=1}^{n} \lambda_i = \det(A)$

Simple Matrices Checking: Diagonal Matrices

Chelle, $t_{r}(A) = \sum_{j=1}^{n} \gamma_{j} = \sum_{j=1}^{n} \lambda_{j}.$ $der(A) = \frac{1}{(1-i)} = \frac{1}{(1-i)} = \frac{1}{(1-i)}.$ Check: Triangular matrix.

Example of Sum and Product of Eigenvalues

Example of Sum and Product of Eigenvalues

Part II Similar Matrices

Definition 24.1 (Similar matrix 相似矩阵) If two $n \times n$ matrices A and B satisfy $A = S^{-1}BS$ for some $S \in \mathbb{R}^{n \times n}$, then we say A and B are similar (相似).

$$A=S^{-1}BS$$

 $II = A(silve S^{-1} may or may not exist).$
 $BS = SA$

For any square matrix A;
I square motrix S, diagonal metrix D, s.t.

$$AS = SD$$
.
(if SII) $A = S \cdot DS^{-1}$
 $\Rightarrow A$ is similar to diagonal matrix D.
Remark, For some A, you can find phravitikle S;
for some A, you can find phravitikle S.

Eigenvalues of Similar Matrices

Proposition 24.3 (First version)

Suppose $A, B \in \mathbb{R}^{n \times n}$ and are similar, i.e., there exists an invertible

matrix S such that $A = SBS^{-1}$, then A and B have the same eigenvalues.

What does "have the same eigenvalues" mean?

Does
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ "have the same eigenvalues"?

年(1,2,2), 年(1,1,2)

We want the answer to be "NO".

 \rightarrow not widely used **Notation:** Denote EIG(A) as the multiset of eigenvalues of matrix A.

Proposition 24.3 (Precise version. Eigvals of Similar matrices)

Suppose $A, B \in \mathbb{R}^{n \times n}$ and are similar, i.e., there exists an invertible

matrix S such that $A = SBS^{-1}$, then A and B have the same eigenvalues, i.e., EIG(A) = EIG(B).

New result: (corollong of old results) χ 1 μ m 2000 (\rightarrow $S^{-1}x \neq 0$.) S^{-1} is invertible. D S-X=D has unique solution X=D. $O S' X = LC of colof S' \neq 0.$

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ are similar, then A and B have the same eigenvalues.

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ have the same eigenvalues, then they are similar.

Judgement: A real square matrix is similar to a real diagonal matrix.

Judgement: If A and B are similar, then
$$tr(A) = tr(B)$$
.

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Instructor)

One sentence summary:

We learned similar matrix and properties of eigenvalues.

Detailed summary:

- i) Sum of eigenvalues = trace of matrix.
- ii) Product of eigenvalues = determinant of matrix.

iii) Similar matrix: $A = SBS^{-1}$

Property: Similar matrices have the same multiset of eigenvalues.

Appendix Diagonalizable

Recall: Collection of Eigen-equations

Collection of n equations for eigenvectors, can be written in matrix form as follows.

Lemma 23.1 [eigen-equations in matrix form] Suppose $Av_1 = \lambda_1 v_1, \dots, Av_n = \lambda_n v_n$, where $v_j \in \mathbb{C}^n, \lambda_j \in \mathbb{C}$. Then AV = VD, (*) where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix, $V = [v_1, \dots, v_n]$.

Lemma 23.2 [reverse: matrix form to eigen-equations] Suppose $D = \text{diag}(\lambda_1, ..., \lambda_n)$ is a diagonal matrix, $V = [v_1, ..., v_n]$, where $v_j \in \mathbb{C}^n, \lambda_j \in \mathbb{C}$. Suppose AV = VD. (*) Then $Av_1 = \lambda_1 v_1, ..., Av_n = \lambda_n v_n$,

Diagonalizable

Claim 24.1 [indep. e.v. ==> A has a special decomposition] If an $n \times n$ matrix A has n linearly independent eigenvectors v_1, \ldots, v_n , corresponding to eigenvalues $\lambda_1, \ldots, \lambda_n$, then $A = S^{-1}DS, \forall k,$ where $S = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$ is invertible, $D = \text{diag}(\lambda_1, \ldots, \lambda_n).$

Claim 24.2 [indep. e.v. <== A has a special decomposition]

If an $n \times n$ matrix A can be written as $A = S^{-1}DS$, $\forall k$, where D is a diagonal matrix, then it has n linearly independent eigenvectors.

Similar and Diagonalizable 相似矩阵和可对角化

Definition 24.1 (Similar matrix 相似矩阵)

If two $n \times n$ matrices A and B satisfy $A = S^{-1}BS$ for some $S \in \mathbb{R}^{n \times n}$,

then we say A and B are similar (相似).

Definition 24.2 (Diagonalizable 可对角化)

If a square matrix A is similar to a diagonalizable, then we say A is diagonalizable.

Theorem 24.1 [Suffi. & Necc. Conditions for Diagonalizable: n indep. eigenvectors] An $n \times n$ matrix A is diagonalizable iff eigenvectors of A can form a basis.

We call this basis an "eigenbasis" (corresponding to A).

Lemma: If $\mathbf{v}_1, \mathbf{v}_2$ are eigenvectors of A, and $V = [\mathbf{v}_1, \mathbf{v}_2]$, then AV = SV.

Thm 22.1 (n=2 case)

Eigenvectors of A can form a basis $\iff A = S \operatorname{diag}(\lambda_1, \lambda_2) S^{-1}$.

Proof of " \Longrightarrow **":** Suppose eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ form a basis, then $S = [\mathbf{v}_1, \mathbf{v}_2]$ is invertible. By Lemma, $AS = SD \Rightarrow A = SDS^{-1}$.

Proof of " (=)": Suppose $S = [\mathbf{v}_1, \mathbf{v}_2]$; since it's invertible, $\mathbf{v}_1, \mathbf{v}_2$ form a basis. $A = S \operatorname{diag}(\lambda_1, \lambda_2) S^{-1} \Rightarrow AS = S \operatorname{diag}(\lambda_1, \lambda_2) \Rightarrow A \mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \text{ and } A \mathbf{v}_2 = \lambda_2 \mathbf{v}_2.$

Appendix Applications

Application : PageRank (Google's 1st Algorithm)

Search [搜索]

Search (key IT problem): pick good webpages

3 key IT problems: Search Recommendation, Advertisement [搜推广]

e.g. Many many webpages related to "application of eigenvalues"

transmitted through a communication medium the eigenvectors and eigenvalues of the comm eigenvalues. The eigenvalues are then, in esser themselves are captured by the eigenvectors.

PageRank: Algorithm for Search

Search (key IT problem): viewed as ranking items

PageRank: algorithm to rank webpages

Rank

	geel	sforge	eks.org	a/appl	ications-of-eig	envalues-and-ei	genvec	tors/		
~	Tutor	ials 🗸	Job	s v	Practice 🗸	Contests			9 6	
m C	SA	Data	Structu	res	Algorithms	Interview Prepa	ration	Data Science	Topic-wise Practice	
4 Complete Guide for ion			ľ	Appl	ications	of	Eigenvo	alues and		
Ineering Coupling				Eigenvectors						

2

Intmath.com/matrices-determinants/8-applications-eigenvalues-eigenvectors.php									
aractive Mathematics	HOME	TUTORING	PROBLEM SOL						
2. Large Determinants	8. Applica	tions of E	igenvalues						
3. Matrices	Why are eigenvalues and eigenvectors important? [
4. Multiplication of Matrices	applications of the use of eigenvalues and eigenvector								
6 4a. Matrix Multiplication examples	- computer science.								
6 4b. Add & multiply matrices applet									
5. Finding the Inverse of a Matrix									
Ó 5b. Inverse of a Matrix using Gauss- Jordan Elimination	a. Google's PageRank								
6. Matrices and Linear Equations	 Google's extraoromary success as a search engine w From the time it was introduced in 1998, Google's me 								

3

Some Thoughts

General advice: before reading any algorithm, think first: What would you do?

Yiming Zhang 张一鸣 (ByteDance): excellent example. Solve recommendation in his own way.

Rank by importance of webpages. Correct but useless!

General advice: before reading any algorithm, think first: What would you do?

Rank by importance of webpages.

How to compute "importance"?

1) Authority? [权威]

2) Number of visitors? [访问量]

3) Number of links to the webpage?—degree of a graph

True hotspot (linked to real webpages)

Fake hotspot (with "fake fans")

What did Page and Burin do in 1998?

How to compute "importance" of webpages?

1) View webpages as a graph.

-If webpage 1 has a link to webpage 2, then add directed edge (1, 2).

2) Estimate # of visitors.

Browsing Dynamics

Assume there are 1000 visitors on each webpage at minute 1. How many on each webpage at minute 2?

 $\begin{aligned} x_{t+1} &= x_t + y_t + z_t \\ y_{t+1} &= x_t + y_t + z_t \\ z_{t+1} &= x_t + y_t + z_t \end{aligned}$

Model for General Graph

Setting: n webpages.

Each webpage may have links to other webpages.

At time t, there are $v_1(t)$, $v_2(t)$, ..., $v_n(t)$ visitors at page 1,2,..., n.

Assumptions:

If there are m pages at a webpage j,

then a visitor at webpage j will click one of the m pages randomly.

Denote $a_{j,k}$ as the probability of a visitor at webpage j to visit webpage k. $A = (a_{jk})_{1 \le j,k \le n}$

Math model:

$$\begin{bmatrix} v_1(t+1) \\ v_1(t+1) \\ \vdots \\ v_n(t+1) \end{bmatrix} = A \begin{bmatrix} v_1(t) \\ v_1(t) \\ \vdots \\ v_n(t) \end{bmatrix}$$

Algorithm: Compute $\mathbf{v}(\infty) \triangleq \lim_{t \to \infty} \mathbf{v}(t)$, and rank webpages by entries of \mathbf{v}_{∞} .

An Example

Time 1:
$$\begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

An Example

Solution

Math model:

$$\begin{bmatrix} v_1(t+1) \\ v_1(t+1) \\ \vdots \\ v_n(t+1) \end{bmatrix} = A \begin{bmatrix} v_1(t) \\ v_1(t) \\ \vdots \\ v_n(t) \end{bmatrix}$$
$$\mathbf{v}(t+1) = A\mathbf{v}(t)$$

Algorithm: Compute $\mathbf{v}(\infty) \triangleq \lim_{t \to \infty} \mathbf{v}(t)$, and rank webpages by entries of \mathbf{v}_{∞} .

Observation:

$$\mathbf{v}(\infty) = A\mathbf{v}(\infty)$$

Thus $\mathbf{v}(\infty)$ is _____