Lecture 25

Singular Value I: Forms and Properties of SVD

Instructor: Ruoyu Sun

Roadmap of MATH2041

Segment 1Solving linear systems (Lec 3-15);Solving least squares problem (Lect 16,17)

[Lec 18-21]: Two relatively independent parts:

Segment 2 —Determinant. [Important tool!] —Linear transformation. [Advanced math perspective of matrix]

> Next: Lec 22-27: Eigenvalues and related. Schedule: —Eigenvalues. Lec 22-24

-Singular values. Lec 25-26

Segment 3

—Quadratic forms. Lec 27.

- 1) Forms of SVD.
- 2) **Computation** of SVD.
- 3) **Properties** of SVD.

4) PCA and image/data compression (if time permitting)

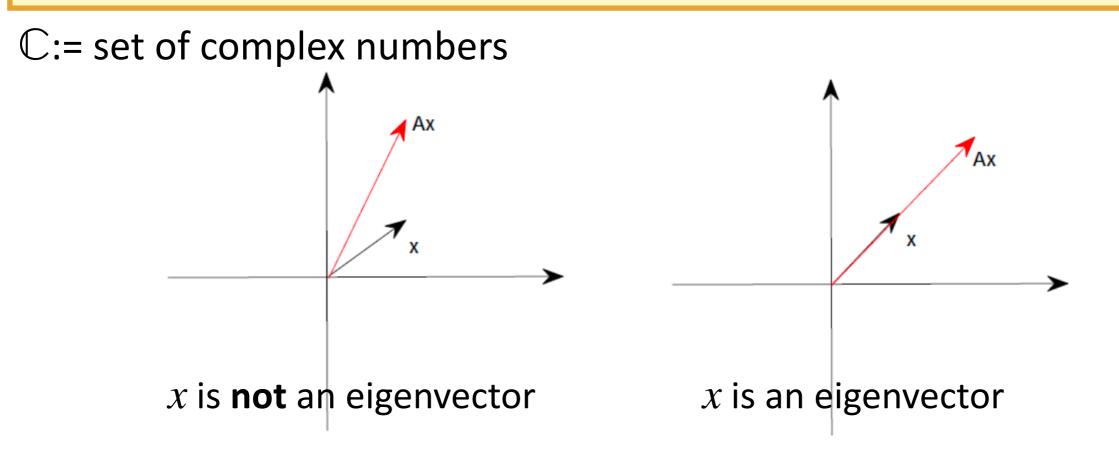
Review

Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

If there exists a scalar λ ($\in \mathbb{R}$ or \mathbb{C}) and a nonzero vector x such that $Ax = \lambda x$,

then λ is called a (real or complex) **eigenvalue** and x is called an **eigenvector** with respect to (or associated with; corresponding to) λ .



General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve det $(A - \lambda I) = 0$ and get *n* roots $\lambda_1, ..., \lambda_n$ Solving single-var polynomial.

Step 2: For each λ_i , find the eigenspace $\text{Null}(\lambda_i I - A)$ Solving up to *n* linear systems.

Any nonzero vector in $\text{Null}(\lambda_i I - A)$ is an eigenvector corresponding to λ_i

$$\operatorname{Null}(\lambda_i I - A) = \left\{ \begin{array}{l} \operatorname{eigenvectors} \text{ of } A \text{ with} \\ \operatorname{respect} \text{ to the eigenvalue } \lambda_i \end{array} \right\} \bigcup \{0\}$$

Theorem 23.1 [Spectral Theorem]

Any real symmetric matrix A can be written as

$$A = VDV^{\top} = \sum_{j=1}^{n} \lambda_j \mathbf{v}_j \mathbf{v}_j^{\top} . \quad (*)$$

where $D = \text{diag}(\lambda_1, ..., \lambda_n)$ is a real diagonal matrix, $V = [\mathbf{v}_1, ..., \mathbf{v}_n]$ is a real orthogonal matrix.

(*): Eigenvalue decomposition (EVD) or eigendecomposition of A.

Judgement: Any real square matrix A can be written as $A = SDS^{\top}$ where D is a diagonal matrix, and S is an orthogonal matrix.

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ are similar, then A and B have the same multiset of eigenvalues.

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ have the same multiset of eigenvalues, then they are similar.

Judgement: A real square matrix is similar to a real diagonal matrix.

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ are similar, then tr(A) = tr(B).

Part I SVD

Q1: Any rectangular matrix has at least one complex eigenvalue.

Q2: Eigenvectors of an $n \times n$ matrix can form a basis \mathbb{C}^n .

Q3: Eigenvectors of an $n \times n$ matrix corresponding to different eigenvalues are orthogonal.

Facts About Eigenvalues

 Fact 1: Eigenvalues are defined for ______ matrices, NOT _____

 ______ matrices.

Fact 2: The eigenvectors of a general matrix ______ form a basis of the whole space.

Fact 3: The eigenvectors of a general matrix ______ orthogonal.

Textbook: Singular vectors solve these problems in a perfect way. SVD is a highlight of linear algebra.

Full SVD

Rectangular diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix of the form

$$\Sigma = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{n} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$
 Or
$$\Sigma = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_{m} & 0 & \dots & 0 \end{bmatrix}$$

Denote as $\Sigma = \operatorname{rec-diag}(\sigma_{1}, \dots, \sigma_{\min(m,n)})_{m \times n}$

Theorem 25.1 [Full SVD]

Any matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\mathsf{T}} = \sum_{j=1}^{\min(m,n)} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}, \quad (*)$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are two orthogonal matrices,

 $\Sigma = \operatorname{rec-diag}(\sigma_1, \dots, \sigma_{\min(m,n)})_{m \times n} \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix.

Full SVD

Rectangular diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix of the form

$$\Sigma = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{n} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$
 Or
$$\Sigma = \begin{bmatrix} \sigma_{1} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_{m} & 0 & \dots & 0 \end{bmatrix}$$

Denote as $\Sigma = \operatorname{rec-diag}(\sigma_{1}, \dots, \sigma_{\min(m,n)})_{m \times n}$

Theorem 25.1 [Full SVD]

Any matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\mathsf{T}} = \sum_{j=1}^{\min(m,n)} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}, \quad (*)$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are two orthogonal matrices,

 $\Sigma = \operatorname{rec-diag}(\sigma_1, \dots, \sigma_{\min(m,n)})_{m \times n} \in \mathbb{R}^{m \times n}_+ \text{ is a rectangular diagonal matrix.}$

Corollary 25.1:

If (*) holds, then columns of U are eigenvectors of $AA^{\top} \in \mathbb{R}^{m \times m}$, called left singular vectors of A; columns of V are eigenvectors of $A^{\top}A \in \mathbb{R}^{n \times n}$, called right singular vectors of A; σ_j 's are called singular values of A, and $\sigma_j = \sqrt{\lambda_j}$ where $\lambda_1, \dots, \lambda_{\min(m,n)}$ are eigenvalues of both AA^{\top} and $A^{\top}A$.

Proof Preparation: Two Lemmas

Lemma 25.1 [eigenvectors and singular vectors] Suppose $A^{\top}Av = \lambda v$, where $\lambda \neq 0, v \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$, then $Av \neq \mathbf{0}_m$. Suppose $A^{\top}Av = \mathbf{0}_n$, then $Av = \mathbf{0}_m$.

Lemma 25.2 [singular-equation-pairs in matrix form] Suppose $A \in \mathbb{R}^{m \times n}$, $Av_1 = \sigma_1 u_1, ..., Av_k = \sigma_k u_k$, where $v_j \in \mathbb{R}^{n \times 1}$, $u_j \in \mathbb{R}^{m \times 1}$, $\sigma_j \in \mathbb{R}$. Then AV = UD, (*) where $D = \text{diag}(\sigma_1, ..., \sigma_k)$ is a diagonal matrix, $V = [v_1, ..., v_k]$, $U = [u_1, ..., u_k]$.

Proof Analysis (II): What's Next after AV = UD?

Lemma 25.1 [eigenvectors and singular vectors]

Suppose $A^{\top}Av = \lambda v$, where $\lambda \neq 0, v \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$, then $Av \neq \mathbf{0}_m$.

Suppose $A^{\top}Av = \mathbf{0}_n$, where $v \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$, then $Av = \mathbf{0}_m$.

From Lemma 25.1, we can construct a few equations

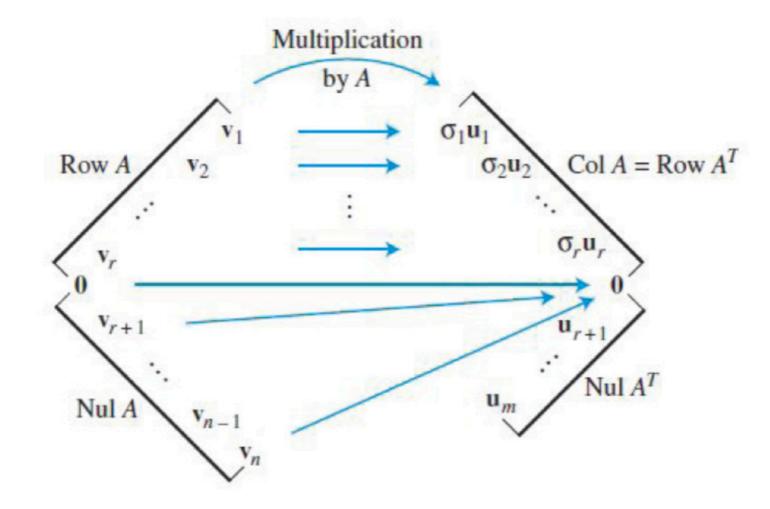
Lemma 25.2 [singular-equation-pairs in matrix form] Suppose $A \in \mathbb{R}^{m \times n}$, $Av_1 = \sigma_1 u_1, ..., Av_k = \sigma_k u_k$, where $v_j \in \mathbb{R}^{n \times 1}$, $u_j \in \mathbb{R}^{m \times 1}$, $\sigma_j \in \mathbb{R}$. Then AV = UD, (*) where $D = \text{diag}(\sigma_1, ..., \sigma_k)$ is a diagonal matrix, $V = [v_1, ..., v_k]$, $U = [u_1, ..., u_k]$.

From AV = UD, can we get an expression of A?

Proof Analysis (III): Completing Basis

$$V = [v_1, ..., v_r], U = [u_1, ..., u_r].$$

From AV = UD, can we get an expression of A?



Wrap-up: Proof Sketch of full SVD Theorem

Assume $m \ge n$ (for case m > n, consider $\tilde{A} = A^{\top}$).

Step 1: Suppose $A^{\top}A$ has eigenvalues $\lambda_1 \ge ... \ge \lambda_r > 0 = \lambda_{r+1} = ... = \lambda_n$ (1). By spectral theorem, there exists orthonormal eigenbasis of $A^{\top}A$: $\{\mathbf{v}_1, ..., \mathbf{v}_r, \mathbf{v}_{r+1}, ..., \mathbf{v}_n\}$,

s.t.
$$A^{\top}A\mathbf{v}_j = \lambda_j \mathbf{v}_j$$

 $[\mathbf{u}_r\})^{\perp}.$

Step 2: We have $A\mathbf{v}_n = 0$ because $||A\mathbf{v}_n||^2 = \mathbf{v}_n^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{v}_n = \mathbf{v}_n^{\mathsf{T}} (\lambda_n \mathbf{v}_n) = 0$. [Essentially proved: $A^{\mathsf{T}} A \mathbf{v} = 0 \Rightarrow \mathbf{A} \mathbf{v} = 0$.]

By same reasoning, $A\mathbf{v}_{r+1} = \ldots = A\mathbf{v}_n = 0$ (2).

Step 3: Let
$$\sqrt{\lambda}_1 \mathbf{u}_1 = A\mathbf{v}_1, \dots, \sqrt{\lambda}_r \mathbf{u}_r = A\mathbf{v}_r$$
 (3)
Easy to show: they are unit-norm, and orthogonal.
Let $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\} \subseteq \mathbb{R}^m$ be orthonormal basis of the span $(\{\mathbf{u}_1, \dots, \mathbf{u}_r\})$
By (1),(2): $\sqrt{\lambda}_{r+1} \mathbf{u}_{r+1} = 0 = A\mathbf{v}_1, \dots, \sqrt{\lambda}_n \mathbf{u}_n = 0 = A\mathbf{v}_n$ (4)

Step 4: Verify $AV = U\Sigma$ using (3),(4). Since $V^{\top}V = I_n$, get $A = U\Sigma V^{\top}$.

Remark: Directly put (3), (4) in matrix form, can get reduced SVD, not full SVD.

Compact SVD

Theorem 25.2 [Compact SVD and vector form]

Any matrix $A \in \mathbb{R}^{m \times n}$ with rank r can be written as

$$A = U_r \Sigma_r V_r^{\mathsf{T}} = \sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}, \quad (*)$$

where $U_r = [\mathbf{u}_1, ..., \mathbf{u}_r] \in \mathbb{R}^{m \times r}$ has orthogonal unit-norm columns, $V_r = [\mathbf{v}_1, ..., \mathbf{v}_r] \in \mathbb{R}^{n \times r}$ has orthogonal unit-norm columns, $\Sigma_r = \operatorname{diag}(\sigma_1, ..., \sigma_r) \in \mathbb{R}^{r \times r}_+$ is a diagonal matrix.

Proof: Direct Corollary of Theorem 25.1

Number of singular values

For $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$ and rank(A)=r, one has $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ are the eigenvalues of $A^T A$. $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_m = 0$ are the eigenvalues of AA^T .

If $m \ge n$, singular values are

If $m \leq n$, singular values are

In summary, the number of singular values is _____

Part II Computation of SVD

Example 1: Compute SVD

Problem 1: Find the SVD of the matrix $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$.

Solution:

Step 1: Find eigenvalues of A'A.

$$A^{\mathrm{T}}A = \begin{bmatrix} 25 & 20\\ 20 & 25 \end{bmatrix} \qquad \qquad AA^{\mathrm{T}} = \begin{bmatrix} 9 & 12\\ 12 & 41 \end{bmatrix}$$

Eigenvalues of $A^T A$ are 45 and 5.

Problem 1: Find the SVD of the matrix $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$.

Solution:

Step 1: Find eigenvalues of AA' and A'A.

$$A^{\mathrm{T}}A = \begin{bmatrix} 25 & 20\\ 20 & 25 \end{bmatrix} \qquad \qquad AA^{\mathrm{T}} = \begin{bmatrix} 9 & 12\\ 12 & 41 \end{bmatrix}$$

Eigenvalues of $A^T A$ are 45 and 5.

Step 2: Find (unit) eigenvectors of A'A, i.e. right singular vectors of A.

$$\begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 45 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Right singular vectors $v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Problem 1: Step 3 and Remark

Step 3: Find left singular vectors of A. Left singular vectors $u_i = \frac{Av_i}{\sigma_i}$ Now compute Av_1 and Av_2 which will be $\sigma_1 u_1 = \sqrt{45} u_1$ and $\sigma_2 u_2 = \sqrt{5} u_2$: $Av_1 = \frac{3}{\sqrt{2}} \begin{bmatrix} 1\\3 \end{bmatrix} = \sqrt{45} \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\3 \end{bmatrix} = \sigma_1 u_1$ $Av_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -3\\1 \end{bmatrix} = \sqrt{5} \frac{1}{\sqrt{10}} \begin{bmatrix} -3\\1 \end{bmatrix} = \sigma_2 u_2$

Conclusion: The SVD of A is $A = U\Sigma V^{\top}$ where

$$\boldsymbol{U} = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \sqrt{45} & \\ & \sqrt{5} \end{bmatrix} \qquad \boldsymbol{V} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Remark: Verify your SVD by checking

Problem 2: Find the (full) SVD of the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Solution:

Step 1: Find eigenvalues of A'A (which is 2 by 2, where 2 = min(m,n))

$$A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Eigenvalues of $A^T A$ are 4 and 0.

Example 2: Compute SVD

```
Problem 1: Find the SVD of the matrix A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}.
```

Solution:

Step 1: Find eigenvalues of A'A (which is 2 by 2, where 2 = min(m,n))

$$A^{\mathsf{T}}A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Eigenvalues of $A^T A$ are 4 and 0.

Step 2: Find (unit) eigenvectors of A'A, i.e. right singular vectors of A.

The unit eigevector w.r.t. $\lambda_1 = 4$ is $\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ The unit eigevector w.r.t. $\lambda_2 = 0$ is $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$

Problem 1: Step 3 and Remark

Step 3: Find left singular vectors of A. Left singular vectors $u_i = \frac{Av_i}{\sigma_i}$ Now $\sigma_1 = \sqrt{\lambda_1} = 2$ so

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

An orthonormal basis for $Null(A^T)=Null(AA^T)$ is

$$\{\mathbf{u}_2,\mathbf{u}_3\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \right\}$$

Conclusion: The full SVD of A is

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = A = U \Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Remark: Verify your SVD by checking _____

Part III Properties of SVD

Four Fundamental Subspaces

$$A = \begin{bmatrix} U_{1}, \dots, U_{r}, U_{r+1}, \dots, U_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & \sigma_{2} & \cdots & \sigma_{r} \\ \vdots & \ddots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \cdots & \sigma_{r} & \cdots & \sigma_{r} \\ \vdots & \cdots & \cdots & \cdots & \cdots & \sigma_{r} \\ \vdots & \cdots & \cdots & \cdots & \cdots & \sigma_{r} \\ \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \cdots \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots \\ \vdots & \vdots & \cdots & \cdots \\$$

Row Space and Columns Space

emma 25.1 Suppose
$$A = \sum_{j=1}^{k} \mathbf{x}_{j} \mathbf{y}_{j}^{\mathsf{T}}$$
, /here

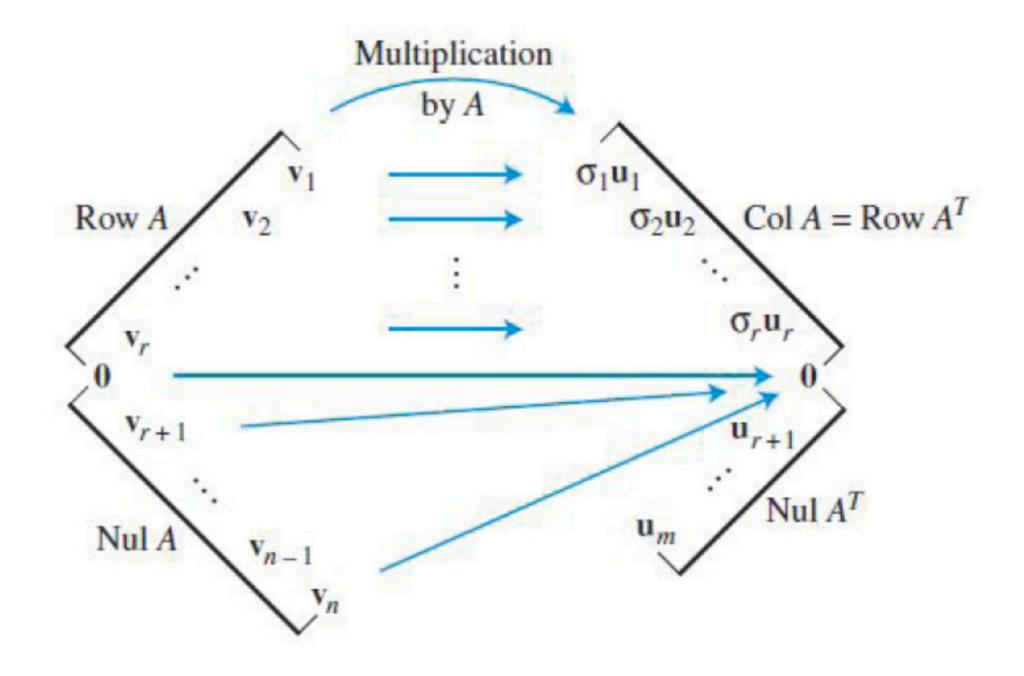
Ν

L

 $\mathbf{x}'_{i}s$ are linearly independent, $\mathbf{y}'_{i}s$ are linearly independent. Then Row(A) = span{ $y_1, ..., y_k$ }, C(A) = span{ $x_1, ..., x_k$ }.

Lemma 25.2 (equivalent) Suppose $A = XY^{T}$, where $X \in \mathbb{R}^{m \times r}$, $Y \in \mathbb{R}^{n \times r}$ have full rank. Then C(A) = C(X), Row(A) = Row(Y^{\top}).

Four Fundamental Subspaces



Rank = # of Nonzero Singular Values

rank(A) = # of nonzero singular values (counting multiplicity)

rank(A) _____ # of nonzero eigenvalues.

Example:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Eigenvalues are _____,

of nonzero eigenvalue is _____

rank(A) =_____.

The number of singular values is the same as the rank of the matrix.

The number of singular values of an $m \times n$ matrix is m or n.

The rank of an $m \times n$ matrix is the number of nonzero eigenvalues.

Part IV Geometry

In geometrical interpretation of eigenvectors, we view the

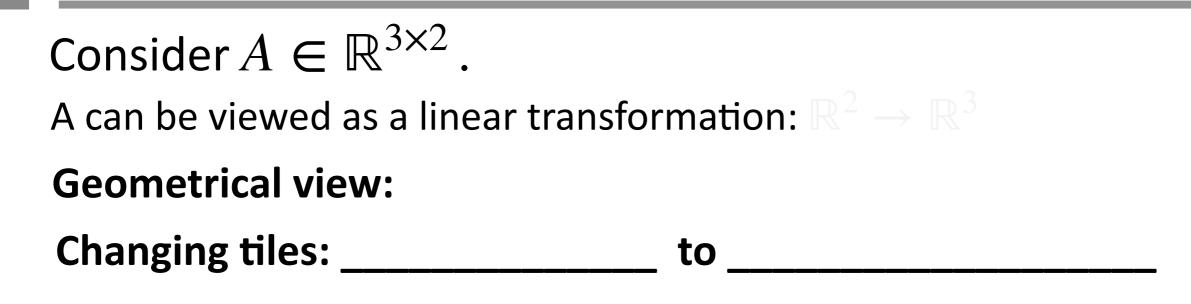
matrix as a linear transformation between _____and _____.

Why?

Two geometrical views:

- —1st view: "Unchanged" during "change"; fixed point.
 This motivation only applies to "self-transformation".
- -2nd view: "Tiles" -> similar tiles with stretching.

Two-Space Transformation: Standard Basis



Two-Space Transformation: Arbitrary Basis

Consider an arbitrary basis.

Changing tiles: _____

to _____

Two-Space Transformation: Arbitrary Basis

Wish: Find basis s.t. shape of "tiles" do NOT change (too much). Changing tiles: ______ to _____

Mathematically:

Find orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ s.t. $\{A\mathbf{v}_1, A\mathbf{v}_2\}$ is _____

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Write Your Own)

One sentence summary: We learn SVD today.

Detailed summary:

- 1) SVD is a decomposition of any real matrix A (can be rectangular) s.t. $A = UDV^{\top},$ where
 - 1b) Compact SVD:
- 2) Relation of singular values/vectors and eigenvalues/eigenvectors:
- 3) Number of singular values is _____.
- 4) Steps of computing SVD: