Lecture 25

Singular Value I: Forms and Properties of SVD

Instructor: Ruoyu Sun

Roadmap of MATH2041

Solving linear systems (Lec 3-15); Solving least squares problem (Lect 16,17) **Segment 1**

[Lec 18-21]: Two relatively independent parts:

—Determinant. [Important tool!] —Linear transformation. [Advanced math perspective of matrix] **Segment 2**

> **Next: Lec 22-27: Eigenvalues and related. Schedule:** —Eigenvalues. Lec 22-24

—**Singular values**. Lec 25-26

Segment 3

—Quadratic forms. Lec 27.

-) **Forms** of SVD.
-)**Computation** of SVD.
-)**Properties** of SVD.

) PCA and image/data compression (if time permitting)

Review

Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

If there exists a scalar λ ($\in \mathbb{R}$ or \mathbb{C}) and a **nonzero** vector x such that $Ax = \lambda x$

then λ is called a (real or complex) eigenvalue and x is called an **eigenvector** with respect to (or associated with; corresponding to) λ .

General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve $\det(A - \lambda I) = 0$ and get *n* roots $\lambda_1, \ldots, \lambda_n$ Solving single-var polynomial.

 $\textbf{Step 2:}$ For each λ_i , find the eigenspace $\textbf{Null}(\lambda_i I - A)$ Solving up to *n* linear systems.

Any nonzero vector in $\text{Null}(\lambda_i I - A)$ is an eigenvector corresponding to *λi*

Null(
$$
\lambda_i I - A
$$
) = { eigenvectors of *A* with
respect to the eigenvalue λ_i } \bigcup {0}

Theorem 23.1 [Spectral Theorem]

Any real symmetric matrix A can be written as

$$
A = VDV^{\mathsf{T}} = \sum_{j=1}^{n} \lambda_j \mathbf{v}_j \mathbf{v}_j^{\mathsf{T}}.
$$
 (*)

 $D = diag(\lambda_1, ..., \lambda_n)$ is a real diagonal matrix, $V = [\mathbf{v}_1, ..., \mathbf{v}_n]$ is a real orthogonal matrix.

(*): Eigenvalue decomposition (EVD) or eigendecomposition of A.

 J udgement: Any real square matrix A can be written as $A = SDS^\top$ where D is a diagonal matrix, and S is an orthogonal matrix.

 $\mathsf{Judgement}$: If $A, B \in \mathbb{R}^{n \times n}$ are similar, then A and B have the same multiset of eigenvalues.

 J udgement: If $A, B \in \mathbb{R}^{n \times n}$ have the same multiset of eigenvalues, then they are similar.

Judgement: A real square matrix is similar to a real diagonal matrix.

Judgement: If $A, B \in \mathbb{R}^{n \times n}$ are similar, then tr(A) = tr(B).

Part I SVD

Q1: Any rectangular matrix has at least one complex eigenvalue.

Q2: Eigenvectors of an $n \times n$ matrix can form a basis \mathbb{C}^n .

Q3: Eigenvectors of an $n \times n$ matrix corresponding to different eigenvalues are orthogonal.

Facts About Eigenvalues

Fact 1: Eigenvalues are defined for matrices, NOT _______ matrices.

Fact 2: The eigenvectors of a general matrix The strim a basis of the whole space.

Fact 3: The eigenvectors of a general matrix _________________ orthogonal.

Textbook: Singular vectors solve these problems in a perfect way. SVD is a highlight of linear algebra.

Full SVD

Rectangular diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix of the form

$$
\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \qquad \mathsf{OPT} \qquad \Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix}
$$

Denote as $\Sigma = \text{rec-diag}(\sigma_1, ..., \sigma_{\min(m,n)})_{m \times n}$

Theorem 25.1 [Full SVD]

Any matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A = U\Sigma V^{\top} = \sum_{j=1}^{\min(m,n)} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\top}, \quad (*)
$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are two orthogonal matrices,

 Σ = rec-diag $(\sigma_1, ..., \sigma_{\min(m,n)})_{m \times n} \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix.

Full SVD

Rectangular diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix of the form

$$
\Sigma = \begin{bmatrix}\n\sigma_1 & 0 & \dots & 0 \\
0 & \sigma_2 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \sigma_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0\n\end{bmatrix}
$$
\n
$$
\mathbf{OPT} \qquad \Sigma = \begin{bmatrix}\n\sigma_1 & 0 & \dots & 0 & 0 & \dots & 0 \\
0 & \sigma_2 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & \dots & 0 \\
0 & 0 & \dots & \sigma_m & 0 & \dots & 0\n\end{bmatrix}
$$

Denote as $\Sigma = \text{rec-diag}(\sigma_1, ..., \sigma_{\min(m,n)})_{m \times n}$

Theorem 25.1 [Full SVD]

Any matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A = U\Sigma V^{\mathsf{T}} = \sum_{j=1}^{\min(m,n)} \sigma_j \mathbf{u}_j \mathbf{v}_j^{\mathsf{T}}, \quad (*)
$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are two orthogonal matrices,

 Σ = rec-diag $(\sigma_1,...,\sigma_{\min(m,n)})_{m\times n}$ ∈ $\mathbb{R}^{m\times n}_+$ is a rectangular diagonal matrix.

Corollary 25.1:

If (*) holds, then columns of U are eigenvectors of $AA^\top \in \mathbb{R}^{m \times m}$, called left singular vectors of A; columns of V are eigenvectors of $A^T A \in \mathbb{R}^{n \times n}$, called right singular vectors of A;

 σ_j 's are called singular values of A, and $\sigma_j=\sqrt{\lambda_j}$ where $\lambda_1,...,\lambda_{\min(m,n)}$ are eigenvalues of both AA^\top and $A^\top A.$

Proof Preparation: Two Lemmas

Lemma 25.1 [eigenvectors and singular vectors] $\textsf{Suppose } A^{\top}A\mathcal{V} = \lambda\mathcal{V}$, where $\lambda \neq 0, \mathcal{V} \in \mathbb{R}^n\backslash{\{\mathbf{0}_n\}}$, then $A\mathcal{V} \neq {\mathbf{0}_m}.$ $\mathsf{Suppose}\,A^\top A\mathcal{v}=\mathbf{0}_n$, then $A\mathcal{v}=\mathbf{0}_m$.

Lemma 25.2 [singular-equation-pairs in matrix form] $\mathsf{Suppose}\,A \in \mathbb{R}^{m \times n}$, $A v_1 = \sigma_1 u_1, ..., A v_k = \sigma_k u_k$, where $v_j \in \mathbb{R}^{n \times 1}$, $u_j \in \mathbb{R}^{m \times 1}$, $\sigma_j \in \mathbb{R}$. Then $AV = UD$, (*) w here $D = \text{diag}(\sigma_1,...,\sigma_k)$ is a diagonal matrix, $V = [\nu_1,...,\nu_k], U = [u_1,...,u_k]$.

Proof Analysis (II): What's Next after AV = UD?

Lemma 25.1 [eigenvectors and singular vectors]

 $\textsf{Suppose}\,A^\top A\mathbb{v} = \lambda\mathbb{v}$, where $\lambda \neq 0, \mathbb{v} \in \mathbb{R}^n\backslash\{\textbf{0}_n\}$, then $A\mathbb{v} \neq \textbf{0}_m$.

 $\textsf{Suppose}\,A^\top A\mathbb{v}=\textbf{0}_{n'}$ where $\mathbb{v}\in \mathbb{R}^n\backslash \{\textbf{0}_n\}$, then $A\mathbb{v}=\textbf{0}_m$.

From Lemma 25.1, we can construct a few equations

Lemma 25.2 [singular-equation-pairs in matrix form] $\mathsf{Suppose}\,A \in \mathbb{R}^{m \times n}$, $A\mathbf{v}_1 = \sigma_1\mathbf{u}_1, ..., A\mathbf{v}_k = \sigma_k\mathbf{u}_k$, where $\mathbf{v}_j \in \mathbb{R}^{n \times 1}$, $\mathbf{u}_j \in \mathbb{R}^{m \times 1}$, $\sigma_j \in \mathbb{R}$. Then $AV = UD$, $(*)$ w here $D = diag(\sigma_1, ..., \sigma_k)$ is a diagonal matrix, $V = [v_1, ..., v_k], U = [u_1, ..., u_k]$.

From AV = UD, can we get an expression of A?

Proof Analysis (III): Completing Basis

$$
V = [v_1, ..., v_r], U = [u_1, ..., u_r].
$$

From AV = UD, can we get an expression of A?

Wrap-up: Proof Sketch of full SVD Theorem

Assume $m \ge n$ (for case $m > n$, consider $\tilde{A} = A^{\top}$).

Step 1: Suppose $A^T A$ has eigenvalues $\lambda_1 \geq \ldots \geq \lambda_r > 0 = \lambda_{r+1} = \ldots = \lambda_n$ (1). By spectral theorem, there exists orthonormal eigenbasis of $A^{\top}A$: $\{v_1, ..., v_r, v_{r+1}, ..., v_n\}$,

$$
\mathbf{s}.\mathbf{t}. A^{\mathsf{T}} A \mathbf{v}_j = \lambda_j \mathbf{v}_j.
$$

Step 2: We have $A\mathbf{v}_n = 0$ because $||A\mathbf{v}_n||^2 = \mathbf{v}_n^{\top} A^{\top} A \mathbf{v}_n = \mathbf{v}_n^{\top} (\lambda_n \mathbf{v}_n) = 0.$ [Essentially proved: $A^{\top}A$ **v** = 0 \Rightarrow A **v** = 0.]

By same reasoning, $A\mathbf{v}_{r+1} = \ldots = A\mathbf{v}_n = 0$ (2).

Step 3: Let
$$
\sqrt{\lambda_1} \mathbf{u}_1 = A \mathbf{v}_1
$$
, ..., $\sqrt{\lambda_r} \mathbf{u}_r = A \mathbf{v}_r$ (3)
\nEasy to show: they are unit-norm, and orthogonal.
\nLet $\{\mathbf{u}_{r+1}, ..., \mathbf{u}_m\} \subseteq \mathbb{R}^m$ be orthonormal basis of the span $({\mathbf{u}_1, ..., \mathbf{u}_r})^{\perp}$.
\nBy (1),(2): $\sqrt{\lambda_{r+1}} \mathbf{u}_{r+1} = 0 = A \mathbf{v}_1$, ..., $\sqrt{\lambda_n} \mathbf{u}_n = 0 = A \mathbf{v}_n$ (4)

Step 4: Verify $AV = U\Sigma$ using (3),(4). Since $V^{\top}V = I_n$, get $A = U\Sigma V^{\top}$.

Remark: Directly put (3), (4) in matrix form, can get reduced SVD, not full SVD.

Compact SVD

Theorem 25.2 [Compact SVD and vector form]

Any matrix $A \in \mathbb{R}^{m \times n}$ with rank r can be written as

$$
A = U_r \Sigma_r V_r^{\top} = \sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^{\top}, \quad (*)
$$

where $U_r = [\mathbf{u}_1, ..., \mathbf{u}_r] \in \mathbb{R}^{m \times r}$ has orthogonal unit-norm columns, $V_r = [\mathbf{v}_1, ..., \mathbf{v}_r] \in \mathbb{R}^{n \times r}$ has orthogonal unit-norm columns, $\Sigma_r = \text{diag}(\sigma_1, ..., \sigma_r) \in \mathbb{R}_+^{r \times r}$ is a diagonal matrix.

Proof: Direct Corollary of Theorem 25.1

Number of singular values

For $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^{T}$ and rank $(A) = r$, one has $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ are the eigenvalues of $A^T A$. $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_m = 0$ are the eigenvalues of AA^T .

If $m \geq n$, singular values are

If $m \leq n$, singular values are

In summary, the number of singular values is

Part II Computation of SVD

Example 1: Compute SVD

Problem 1: Find the SVD of the matrix $A = \begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix}$. 3 0 4 5]

Solution:

Step 1: Find eigenvalues of A'A.

$$
A^{\mathrm{T}}A = \left[\begin{array}{cc} 25 & 20 \\ 20 & 25 \end{array} \right] \qquad \qquad AA^{\mathrm{T}} = \left[\begin{array}{cc} 9 & 12 \\ 12 & 41 \end{array} \right]
$$

Eigenvalues of $A^T A$ are 45 and 5.

Problem 1: Find the SVD of the matrix $A = \begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix}$. 3 0 4 5]

Solution:

Step 1: Find eigenvalues of AA' and A'A.

$$
A^{\mathrm{T}}A = \left[\begin{array}{cc} 25 & 20 \\ 20 & 25 \end{array} \right] \qquad \qquad AA^{\mathrm{T}} = \left[\begin{array}{cc} 9 & 12 \\ 12 & 41 \end{array} \right]
$$

Eigenvalues of $A^T A$ are 45 and 5.

Step 2: Find (unit) eigenvectors of A'A, i.e. right singular vectors of A.

$$
\begin{bmatrix} 25 & 20 \ 20 & 25 \end{bmatrix} \begin{bmatrix} 1 \ 1 \end{bmatrix} = 45 \begin{bmatrix} 1 \ 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 25 & 20 \ 20 & 25 \end{bmatrix} \begin{bmatrix} -1 \ 1 \end{bmatrix} = 5 \begin{bmatrix} -1 \ 1 \end{bmatrix}
$$

\nRight singular vectors $v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \ 1 \end{bmatrix}$ $v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \ 1 \end{bmatrix}$

Problem 1: Step 3 and Remark

Step 3: Find left singular vectors of A. Left singular vectors $u_i = \frac{Av_i}{\sigma_i}$ Now compute Av_1 and Av_2 which will be $\sigma_1 u_1 = \sqrt{45} u_1$ and $\sigma_2 u_2 = \sqrt{5} u_2$: $Av_1 = \frac{3}{\sqrt{2}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \sqrt{45} \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \sigma_1 u_1$ $Av_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \sqrt{5} \frac{1}{\sqrt{10}} \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \sigma_2 u_2$

Conclusion: The SVD of A is $A = U\Sigma V^{\top}$ where

$$
U = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sqrt{45} \\ \sqrt{5} \end{bmatrix} \quad V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}
$$

Remark: Verify your SVD by checking

Problem 2: Find the (full) SVD of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. 1 1 1 1 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Solution:

Step 1: Find eigenvalues of A'A (which is 2 by 2, where 2 = min(m,n))

$$
A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}
$$

Eigenvalues of $A^T A$ are 4 and 0.

Example 2: Compute SVD

```
Problem 1: Find the SVD of the matrix A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.
                                                                                           1 1
                                                                                           1 1
                                                                                           \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}
```
Solution:

Step 1: Find eigenvalues of A'A (which is 2 by 2, where 2 = min(m,n))

$$
A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}
$$

Eigenvalues of A^TA are 4 and 0.

Step 2: Find (unit) eigenvectors of A'A, i.e. right singular vectors of A.

The unit eigevector w.r.t. $\lambda_1 = 4$ is $\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ The unit eigevector w.r.t. $\lambda_2 = 0$ is $\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Problem 1: Step 3 and Remark

Left singular vectors $u_i = \frac{Av_i}{\sigma_i}$ **Step 3**: Find left singular vectors of A. Now $\sigma_1 = \sqrt{\lambda_1} = 2$ so

$$
\textbf{u}_1=\frac{1}{\sigma_1}\textbf{A}\textbf{v}_1=\frac{1}{2}\begin{bmatrix}1&1\\1&1\\0&0\end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\\0\end{bmatrix}
$$

An orthonormal basis for Null (A^T) =Null (AA^T) is

$$
\left\{ \mathbf{u}_2, \mathbf{u}_3 \right\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}
$$

Conclusion: The full SVD of A is

$$
\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}
$$

Remark: Verify your SVD by checking

Part III Properties of SVD

Four Fundamental Subspaces

$$
A = [U_{1}, \dots, U_{r}, U_{r+1}, \dots, U_{m}] \begin{pmatrix} 6 & 6 & 0 \\ 6 & 6 & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T} \\ \vdots \\ v_{n}^{T} \\ v_{n}^{T} \end{pmatrix}
$$

\n $R(A)$ Column space : $dim \r$, orthonormal basis $U_{1}, U_{2}, \dots, U_{r}$,
\nnull space : $dim \r$, $-\cdots$ basis V_{r+1}, \dots, V_{r} .
\n ref_{r} $form$ space : $dim \r$, $-\cdots$ basis U_{1}, \dots, V_{r} .
\n ref_{r} lim lim lim

Row Space and Columns Space

Lemma 25.1 Suppose
$$
A = \sum_{j=1}^{k} x_j y_j^T
$$
,
where

 \mathbf{x}'_j *s* are linearly independent, \mathbf{y}'_j *s* are linearly independent. T hen Row(A) = span $\{ \mathbf{y}_1, ..., \mathbf{y}_k \}$, C(A) = span $\{ \mathbf{x}_1, ..., \mathbf{x}_k \}$.

Lemma 25.2 (equivalent) Suppose $A = XY^{\top}$, $X \in \mathbb{R}^{m \times r}$, $Y \in \mathbb{R}^{n \times r}$ have full rank. Then $C(A) = C(X)$, Row(A) = Row (Y^{\top}) .

Four Fundamental Subspaces

Rank = # of Nonzero Singular Values

 $rank(A) = #$ of nonzero singular values (counting multiplicity)

rank (A) \qquad # of nonzero eigenvalues.

Example:

$$
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

Eigenvalues are __________,

of nonzero eigenvalue is $\frac{1}{\sqrt{1-\frac{1}{$

rank $(A) =$ _______.

The number of singular values is the same as the rank of the matrix.

The number of singular values of an $m \times n$ matrix is m or n.

The rank of an $m \times n$ matrix is the number of nonzero eigenvalues.

Part IV Geometry

In geometrical interpretation of eigenvectors, we view the

matrix as a linear transformation between _____and _______.

Why?

Two geometrical views:

- —1st view: "Unchanged" during "change"; fixed point. This motivation only applies to "self-transformation".
- —2nd view: "Tiles" —> similar tiles with stretching.

Two-Space Transformation: Standard Basis

Two-Space Transformation: Arbitrary Basis

Consider an arbitrary basis.

Changing tiles: _____________ to ____________________

Two-Space Transformation: Arbitrary Basis

Wish: Find basis s.t. shape of "tiles" do NOT change (too much). **Changing tiles: _____________ to ____________________**

Mathematically:

Find orthonormal basis {**v** s.t. is ________________ 1, **v**2} {*A***v**1, *A***v**2}

Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

Summary Today (Write Your Own)

One sentence summary: We learn SVD today.

Detailed summary:

- 1) SVD is a decomposition of any real matrix A (can be rectangular) s.t. $A = UDV^{\mathsf{T}}$, where
	- 1b) Compact SVD:
- 2) Relation of singular values/vectors and eigenvalues/eigenvectors:
- 3) Number of singular values is $\qquad \qquad$.
- 4) Steps of computing SVD: