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Singular Value I:
Forms and Properties of SVD
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Roadmap of MATH2041

Solving linear systems (Lec 3-15);
Segment 1 _
Solving least squares problem (Lect 16,17)

[Lec 18-21]: Two relatively independent parts:
Segment 2  —Determinant. [Important tool!]

—Linear transformation. [Advanced math perspective of matrix]

Next: Lec 22-27: Eigenvalues and related.
Schedule:

—Eigenvalues. Lec 22-24

—Singular values. Lec 25-26

—Quadratic forms. Lec 27.

Segment 3



Outline of SVD

1) Forms of SVD.

2) Computation of SVD.

3) Properties of SVD.

4) PCA and image/data compression (if time permitting)
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I Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors)

et A € C'™" be a square matrix.

f there exists a scalar A ( € R or C) and a nonzero vector x such that
Ax = Ax,

then A is called a (real or complex) eigenvalue and x is called an

eigenvector with respect to (or associated with; corresponding to) A.

C:= set of complex numbers
A A
AAX

X 1s not an eigenvector X 1S an eigenvector



I General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve det(A — AI) = 0 and getnroots A, ..., 4,

Solving single-var polynomial.

Step 2: For each 4, find the eigenspace Null(4./ — A)

Solving up to n linear systems.

Any nonzero vector in Null(4./ — A) is an eigenvector

corresponding to 4,

Null(/liI—A):{ eigenvectors of A with } U (0)
i

respect to the eigenvalue A



I Spectral Theorem

Theorem 23.1 [Spectral Theorem]
Any real symmetric matrix A can be written as

n
— T_ T
A=VDV'=) dvvl. (%)
j=1
where D = diag(4, ..., 4,) is a real diagonal matrix,

V=1v,,...,v, | isareal orthogonal matrix.

(*): Eigenvalue decomposition (EVD) or eigendecomposition of A.



Judgement Question

Judgement: Any real square matrix A can be written as A = SDS ' where D is

a diagonal matrix, and S is an orthogonal matrix.

Judgement: If A, B € R are similar, then A and B have the same multiset of

eigenvalues.

Judgement: If A, B € R have the same multiset of eigenvalues, then they

are similar.

Judgement: A real square matrix is similar to a real diagonal matrix.

Judgement: If A, B € R are similar, then tr(A) = tr(B).



Part| SVD




Judgement Questions

Q1: Any rectangular matrix has at least one complex eigenvalue.

Q2: Eigenvectors of an n X n matrix can form a basis C".

Q3: Eigenvectors of an n X n matrix corresponding to different

eigenvalues are orthogonal.



I Facts About Eigenvalues

Fact 1: Eigenvalues are defined for matrices, NOT
matrices.
Fact 2: The eigenvectors of a general matrix form

a basis of the whole space.

Fact 3: The eigenvectors of a general matrix orthogonal.

Textbook: Singular vectors solve these problems in a perfect way.
SVD is a highlight of linear algebra.



Full SVD

Rectangular diagonal matrix £ € R"™" is a matrix of the form

oo 0 ... O
0 0 ... 0 (6, 0 ... 0 0 .. 0
s<lo 0 o o oOr e[0T o0
(:) 0 0 _O 0 o, 0 ... 0
0 0 .. 0
Denote as X = rec-diag(oy, ..., Gmin(m,n))mxn
Theorem 25.1 [Full SVD]
Any matrix A € R can be written as
min(m,n)
_ T_ T *
A=UXV = Z owyv;, (%)
J=1

where U € R™™ V € R™" are two orthogonal matrices,

T = rec-diag(oy, .- ., Opingmn)mxn € R™" is a rectangular diagonal matrix.



Full SVD

Rectangular diagonal matrix £ € R"™" is a matrix of the form

oo 0 ... O
0 0 ... 0 (6, 0 ... 0 0 .. 0
Z=66...6n Or 2:062088
0 00 o 0 O]
0 0 .. 0
Denote as X = rec-diag(oy, ..., Gmin(m,n))mxn
Theorem 25.1 [Full SVD]
Any matrix A € R can be written as
min(m,n)
_ T_ T *
A=UXV = 2 owyv;, (%)

j=1
where U € R™™ V € R™" are two orthogonal matrices,

> = rec-diag(oy, ..., 0 € R™"is a rectangular diagonal matrix.

min(m,n))an

Corollary 25.1:
If (*) holds, then columns of U are eigenvectors of AAT € R™ called left singular vectors of A;

columns of V are eigenvectors of ATA € R™", called right singular vectors of A;

o.'s are called singular values of A, and 0; = \/IJ where 4, ..., 4

J y are eigenvalues of both AATandATA.

min(m,n



Proof Preparation: Two Lemmas

Lemma 25.1 [eigenvectors and singular vectors]
Suppose A Av = Av, where 1 # 0,v € R™{0,}, thenAv # 0.

Suppose ATAv =0 ,thenAv =0 .

Lemma 25.2 [singular-equation-pairs in matrix form]

Suppose A € R™", Av| = oyu,, ..., Av, = oy, wherev; € R u; € R™Mx1 o, € R.

Then AV =UD, (*)
where D = diag(oy, ..., 0;) is a diagonal matrix, V = [v|, ..., ], U = [uy, ..., u;] .



Proof Analysis (Il): What’s Next after AV = UD?

Lemma 25.1 [eigenvectors and singular vectors]
Suppose A Av = Av, where 4 # 0,v € R"™\{0,}, then Av £ 0.
Suppose ATAv = 0., wherev € R"\{0,}, thenAv =0 .

From Lemma 25.1, we can construct a few equations

Lemma 25.2 [singular-equation-pairs in matrix form]

Suppose A € R™", Av| = oyu,, ..., Av; = o, where v, € R u € R™!, 0, € R.

Then AV =UD, (*)
where D = diag(oy, ..., 6;) is a diagonal matrix, V= [v,...,v, ], U = [uy, ..., u;] .

From AV = UD, can we get an expression of A?



I Proof Analysis (l1l): Completing Basis

V=[v,....,v],U=[u,...,ul.

From AV = UD, can we get an expression of A?

Multiplication

//b—yh




Wrap-up: Proof Sketch of full SVD Theorem

Assume m > n (for case m > n, consider A = AT).

Step 1: Suppose A ' A has eigenvalues 4, > ... >4, >0=4,,=...= 4, (1),
By spectral theorem, there exists orthonormal eigenbasis of ATA: Vi, e ts Vo Vi, oo, Vo

[ ] ., n
T _
s.t. A Avj — /ljvj.

Step 2: We have Av, = O because ||[Av, ||°=v A'Av, =v (1 v,)=0.
[Essentially proved: A TAv = 0 = Av = (.]

By same reasoning, Av,.;=...=Av, =0 (2).

Step 3: Let \//_"tlul =Av, ... \//_"tru,, = Av, (3)
Easy to show: they are unit-norm, and orthogonal.

Let {u,, {,...,u_} C R™be orthonormal basis of the span ({u, ...,u,})*.
By (1),(2): VA_ ., =0=Av,, ... y/iu, =0=Av, 4

Step 4: Verify AV = UX using (3),(4). Since V'V = I, getA = Uuxv'.

Remark: Directly put (3), (4) in matrix form, can get reduced SVD, not full SVD.



Compact SVD

Theorem 25.2 [Compact SVD and vector form]

Any matrix A € R with rank r can be written as

_ T_ Y
A=UX. V. =) cuvl,
j=1

J

where U, = [uy,...,u,] € R™ has orthogonal unit-norm columns,
V.= [vy,...,v] €R™ has orthogonal unit-norm columns,

Y. = diag(oy, ..., 0,) € R is a diagonal matrix.

Proof: Direct Corollary of Theorem 25.1



Number of singular values

For Ac R™" A= UXV' and rank(A)=r, one has
Al > 2 A > Apy1 = -+ = Ap = 0 are the eigenvalues of ATA.
Al > 2 A > Apy1 = -+ = Ay = 0 are the eigenvalues of AAT.

If m > n, singular values are

If m < n, singular values are

In summary, the number of singular values is




Part II Computation of SVD




I Example 1: Compute SVD

Problem 1: Find the SVD of the matrix A = [i 2 :
Solution:
Step 1: Find eigenvalues of A’'A.
. [25 20 o B B Ol 12
AA—[zo 25] AA_[lZ 41]

Eigenvalues of AT A are 45 and 5.



I Problem 1: Step 1 and Step 2

Problem 1: Find the SVD of the matrix A = li (5) :
Solution:
Step 1: Find eigenvalues of AA’ and A’A.
v, [ 25 20 T R R 08 12
AA—[zo 25] AA_[IZ 41]

Eigenvalues of AT A are 45 and 5.

Step 2: Find (unit) eigenvectors of A’A, i.e. right singular vectors of A.
25 20 ][ 1 1 25 20 | [ —1 ~1
[20 25“1}:45[1] [20 25” 1]=5[ 1]

o o 1 1 1 _1
Right singular vectors v; = \—/—5 !1] Lol 'ﬁ[ 1]



I Problem 1: Step 3 and Remark

A'v,-

oF)

Step 3: Find left singular vectors of A.  Left singular vectors u; =

Now compute Av, and Av, which will be oyu; = V45w, and oous = V/Huo !

S "1 1 1

Av1 = E L 9 ] — \/45\/—1'_0 [ 3 ] = 01 U
1 [ -3 1 -3

Ave = %- 1] = \/gﬁ[ 1:| 02 U2

Conclusion: TheSVDofAisA = UXV' where
2t - [

- 3 1

Vio sl v=ali 1

Remark: Verify your SVD by checking




Example 2: Compute SVD

11
Problem 2: Find the (full) SVD of the matrix A= |1 1].
0 0.

Solution:
Step 1: Find eigenvalues of A’A (which is 2 by 2, where 2 = min(m,n))

r 22
AA_[22

Eigenvalues of AT A are 4 and 0.



Example 2: Compute SVD

1T
Problem 1: Find the SVD of the matrixA= 1|1 1.
0 0]

Solution:
Step 1: Find eigenvalues of A’A (which is 2 by 2, where 2 = min(m,n))

2 2
ATA= [2 2]
Eigenvalues of AT A are 4 and 0.

Step 2: Find (unit) eigenvectors of A’A, i.e. right singular vectors of A.
The unit eigevector w.r.t. Ay =4is v; = 1 [ 1 ]

7
The unit eigevector w.r.t. Ao =0 is Vo = i [ 1 ]
—1

2
V2



I Problem 1: Step 3 and Remark

A'vz-

oF)

Step 3: Find left singular vectors of A.  Left singular vectors u; =

Now 01 = \/)\1 =2s0

Conclusion: The full SVD of A is

1 1 ol r -

(1 1] 2 2 2 0lrr 1
1 1| =A=UzV = |5 - 0 0 [\? _\/51}
0 0] 0 o 1|0 o] Llvz v2

Remark: Verify your SVD by checking




Part Ill  Properties of SVD




I Four Fundamental Subspaces
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Row Space and Columns Space

k
Lemma 25.1 Suppose A = Z ijjT,

=
where Y

X]fs are linearly independent, y]fs are linearly independent.

Then Row(A) = span{yy, ..., ¥z}, C(A)=span{Xy,...,X;}.

Lemma 25.2 (equivalent) Suppose A = XY,
where X € R™" Y € R™" have full rank.

Then C(A) = C(X), Row(A) = Row(Y ).



I Four Fundamental Subspaces

Multiplication

/T)—)/-A\A




Rank = # of Nonzero Singular Values

rank(A) = # of nonzero singular values (counting multiplicity)

rank(A) # of nonzero eigenvalues.
Example:
01
A =
_O O_

Eigenvalues are :

# of nonzero eigenvalue 1s

rank(A) =




I Judgement

The number of singular values is the same as the rank of the matrix.

The number of singular values of an m X n matrix is m or n.

The rank of an m X n matrix is the number of nonzero eigenvalues.



Part [V Geometry




Facts About Eigenvalues

In geometrical interpretation of eigenvectors, we view the

matrix as a linear transformation between and

Why?
Two geometrical views:

—1st view: “Unchanged” during “change”; fixed point.
This motivation only applies to “self-transformation”.

—2nd view: “Tiles” —> similar tiles with stretching.



Two-Space Transformation: Standard Basis

Consider A € R3%2.
A can be viewed as a linear transformation:

Geometrical view:
Changing tiles: to




Two-Space Transformation: Arbitrary Basis

Consider an arbitrary basis.

Changing tiles: to




Two-Space Transformation: Arbitrary Basis

Wish: Find basis s.t. shape of “tiles” do NOT change (too much).
Changing tiles: to

Mathematically:
Find orthonormal basis {v, V,}s.t. {Av, AV,} is




I Summary Today (Write Your Own)

One sentence summary.

Detailed summary:



Summary Today (Write Your Own)

One sentence summary:
We learn SVD today.

Detailed summary:

1) SVD is a decomposition of any real matrix A (can be rectangular) s.t.
A=UDV',

where

1b) Compact SVD:

2) Relation of singular values/vectors and eigenvalues/eigenvectors:

3) Number of singular values is

4) Steps of computing SVD:



