
Lecture 25

Instructor: Ruoyu Sun

Singular Value I: 
Forms and Properties of SVD 



Roadmap of MATH2041

Solving linear systems (Lec 3-15); 

Solving least squares problem (Lect 16,17)

[Lec 18-21]: Two relatively independent parts:

—Determinant.  [Important tool!]

—Linear transformation.  [Advanced math perspective of matrix]

Segment 1

Segment 2

Segment 3

Next: Lec 22-27:  Eigenvalues and related. 

Schedule:

 —Eigenvalues. Lec 22-24

 —Singular values. Lec 25-26

 —Quadratic forms. Lec 27.



Outline of SVD

1） Forms of SVD.

2）Computation of SVD.

4） PCA and image/data compression (if time permitting)

3）Properties of SVD.



Review



Eigenvalues and Eigenvectors

Definition 21.1 (Eigenvalues and Eigenvectors)

 is not an eigenvectorx  is an eigenvectorx

Let  be a square matrix.A ∈ ℂn×n

If there exists a scalar  (  or ) and a nonzero vector  such that

,


then  is called a (real or complex) eigenvalue and  is called an 
eigenvector with respect to (or associated with; corresponding to) .

λ ∈ ℝ ℂ x
Ax = λx

λ x
λ

:= set of complex numbersℂ



General Procedure to Find Eigenvalues/Eigenvectors

Step 1: Solve  and get  roots  det(A − λI) = 0 n λ1, …, λn

Step 2: For each , find the eigenspace λi Null(λiI − A)

Any nonzero vector in  is an eigenvector 
corresponding to 

Null(λiI − A)
λi

eigenvectors of  with 
respect to the eigenvalue 

A
λi{ } ⋃ {0}Null(λiI − A) =

Solving single-var polynomial.

Solving up to  linear systems.n



Spectral Theorem

Theorem 23.1 [Spectral Theorem] 

Any real symmetric matrix  can be written as 


                                                  =      (*)     


where  is a real diagonal matrix,

             is a real orthogonal matrix.               

A

A = VDV⊤
n

∑
j=1

λjvjv⊤
j .

D = diag(λ1, …, λn)
V = [v1, …, vn]

(*): Eigenvalue decomposition (EVD) or eigendecomposition of A. 



Judgement Question

Judgement: Any real square matrix A can be written as  where  is 

a diagonal matrix, and S is an orthogonal matrix.

A = SDS⊤ D

Judgement: If  are similar, then tr(A) = tr(B).A, B ∈ ℝn×n

Judgement: If  are similar, then  and  have the same multiset of 

eigenvalues.

A, B ∈ ℝn×n A B

Judgement: If  have the same multiset of eigenvalues, then they 

are similar. 

A, B ∈ ℝn×n

Judgement: A real square matrix is similar to a real diagonal matrix. 



Part I     SVD



Judgement Questions

Q1: Any rectangular matrix has at least one complex eigenvalue. 

Q2: Eigenvectors of an  matrix can form a basis . n × n ℂn

Q3: Eigenvectors of an  matrix corresponding to different 

eigenvalues are orthogonal.

n × n



Facts About Eigenvalues

Fact 1: Eigenvalues are defined for ______ matrices, NOT 

_______ matrices. 

Fact 2:  The eigenvectors of a general matrix ____________ form 

a basis of the whole space. 

Fact 3:  The eigenvectors of a general matrix ____________ orthogonal.

Textbook: Singular vectors solve these problems in a perfect way.

SVD is a highlight of linear algebra.



Full SVD

Theorem 25.1 [Full SVD]

Any matrix  can be written as 


                                                  =      (*)     


where  ,  are two orthogonal matrices, 

               is a rectangular diagonal matrix.

A ∈ ℝm×n

A = UΣV⊤
min(m,n)

∑
j=1

σjujv⊤
j ,

U ∈ ℝm×m V ∈ ℝn×n

Σ = rec-diag(σ1, …, σmin(m,n))m×n ∈ ℝm×n

Rectangular diagonal matrix  is a matrix of the formΣ ∈ ℝm×n

Σ =

σ1 0 … 0
0 σ2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … σn

0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 0

Σ =

σ1 0 … 0 0 … 0
0 σ2 … 0 0 … 0
⋮ ⋮ ⋱ ⋮ 0 … 0
0 0 … σm 0 … 0

or

Denote as Σ = rec-diag(σ1, …, σmin(m,n))m×n



Full SVD

Theorem 25.1 [Full SVD]

Any matrix  can be written as 


                                                  =      (*)     


where  ,  are two orthogonal matrices, 

               is a rectangular diagonal matrix.

A ∈ ℝm×n

A = UΣV⊤
min(m,n)

∑
j=1

σjujv⊤
j ,

U ∈ ℝm×m V ∈ ℝn×n

Σ = rec-diag(σ1, …, σmin(m,n))m×n ∈ ℝm×n
+

Rectangular diagonal matrix  is a matrix of the formΣ ∈ ℝm×n

Σ =

σ1 0 … 0
0 σ2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … σn

0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 0

Σ =

σ1 0 … 0 0 … 0
0 σ2 … 0 0 … 0
⋮ ⋮ ⋱ ⋮ 0 … 0
0 0 … σm 0 … 0

or

Denote as Σ = rec-diag(σ1, …, σmin(m,n))m×n

Corollary 25.1: 

If (*) holds, then columns of  are eigenvectors of , called left singular vectors of A;


 columns of   are eigenvectors of , called right singular vectors of A;


 ’s are called singular values of A, and  where  are eigenvalues of both  and . 

U AA⊤ ∈ ℝm×m

V A⊤A ∈ ℝn×n

σj σj = λj λ1, …, λmin(m,n) AA⊤ A⊤A



Proof Preparation: Two Lemmas

Lemma 25.2 [singular-equation-pairs in matrix form] 


Suppose ,  where . 


Then       (*)     

where  is a diagonal matrix,               

A ∈ ℝm×n Av1 = σ1u1, …, Avk = σkuk, vj ∈ ℝn×1, uj ∈ ℝm×1, σj ∈ ℝ
AV = UD,
D = diag(σ1, …, σk) V = [v1, …, vk], U = [u1, …, uk] .

Lemma 25.1 [eigenvectors and singular vectors] 


Suppose , where , then .     


Suppose , then             

A⊤Av = λv λ ≠ 0,v ∈ ℝn\{0n} Av ≠ 0m

A⊤Av = 0n Av = 0m .



Proof Analysis (II): What’s Next after AV = UD?

Lemma 25.2 [singular-equation-pairs in matrix form] 


Suppose ,  where . 


Then       (*)     

where  is a diagonal matrix,               

A ∈ ℝm×n Av1 = σ1u1, …, Avk = σkuk, vj ∈ ℝn×1, uj ∈ ℝm×1, σj ∈ ℝ
AV = UD,
D = diag(σ1, …, σk) V = [v1, …, vk], U = [u1, …, uk] .

Lemma 25.1 [eigenvectors and singular vectors] 


Suppose , where , then .     


Suppose , where , then             

A⊤Av = λv λ ≠ 0,v ∈ ℝn\{0n} Av ≠ 0m

A⊤Av = 0n v ∈ ℝn\{0n} Av = 0m .

From AV = UD, can we get an expression of A?

From Lemma 25.1, we can construct a few equations



Proof Analysis (III): Completing Basis

From AV = UD, can we get an expression of A?

V = [ ], U = . v1, …, vr [u1, …, ur]



Wrap-up: Proof Sketch of full SVD Theorem

Step 1: Suppose  has eigenvalues  .A⊤A λ1 ≥ … ≥ λr > 0 = λr+1 = … = λn (1)
By spectral theorem, there exists orthonormal eigenbasis of :  { },


 s.t. 

A⊤A v1, …, vr, vr+1, …, vn

A⊤Avj = λjvj .

Assume   (for case , consider ).m ≥ n m > n Ã = A⊤

Step 2: We have  because 


 [Essentially proved: ] 

Avn = 0 ∥Avn∥2 = v⊤
n A⊤Avn = v⊤

n (λnvn) = 0.
A⊤Av = 0 ⇒ Av = 0.

By same reasoning,   . Avr+1 = … = Avn = 0 (2)

λr+1ur+1 = 0 = Av1, …, λnun = 0 = Avn (4)

Step 3: Let   (3) 


Easy to show: they are unit-norm, and orthogonal.

λ1u1 = Av1, …, λrur = Avr

Let  be orthonormal basis of the span .  {ur+1, …, um} ⊆ ℝm ({u1, …, ur})⊥

Step 4: Verify  using (3),(4). Since  get .AV = UΣ V⊤V = In, A = UΣV⊤

By (1),(2):

Remark: Directly put (3), (4) in matrix form, can get reduced SVD, not full SVD.



Compact SVD

Theorem 25.2 [Compact SVD and vector form]

Any matrix  with rank  can be written as 


                                                       (*)     


where   has orthogonal unit-norm columns, 


              has orthogonal unit-norm columns, 


               is a diagonal matrix.

A ∈ ℝm×n r

A = Ur Σr V⊤
r =

r

∑
j=1

σjujv⊤
j ,

Ur = [u1, …, ur] ∈ ℝm×r

Vr = [v1, …, vr] ∈ ℝn×r

Σr = diag(σ1, …, σr) ∈ ℝr×r
+

Proof: Direct Corollary of Theorem 25.1



Number of singular values

If , singular values arem ≥ n

If , singular values arem ≤ n

In summary, the number of singular values is ___________.



Part II  Computation of SVD



Example 1: Compute SVD

Problem 1: Find the SVD of the matrix A = .[3 0
4 5]

Solution: 

Step 1: Find eigenvalues of A’A.

Eigenvalues of  are 45 and 5.AT A



Problem 1: Step 1 and Step 2

Solution: 
Step 1: Find eigenvalues of AA’ and A’A.

Eigenvalues of  are 45 and 5.AT A

Step 2: Find (unit) eigenvectors of A’A, i.e. right singular vectors of A. 

Problem 1: Find the SVD of the matrix A = .[3 0
4 5]



Step 3: Find left singular vectors of A. 

Conclusion: 

Remark: Verify your SVD by checking ______________________

The SVD of A is  whereA = UΣV⊤

Problem 1: Step 3 and Remark



Example 2: Compute SVD

Problem 2: Find the (full) SVD of the matrix A = .[
1 1
1 1
0 0]

Solution: 
Step 1: Find eigenvalues of A’A (which is 2 by 2, where 2 = min(m,n))

Eigenvalues of  are 4 and 0.AT A



Example 2: Compute SVD

Problem 1: Find the SVD of the matrix A = .[
1 1
1 1
0 0]

Solution: 
Step 1: Find eigenvalues of A’A (which is 2 by 2, where 2 = min(m,n))

Eigenvalues of  are 4 and 0.AT A

Step 2: Find (unit) eigenvectors of A’A, i.e. right singular vectors of A. 



Step 3: Find left singular vectors of A. 

Conclusion: 

Remark: Verify your SVD by checking ______________________

The  full SVD of A is

Problem 1: Step 3 and Remark



Part III     Properties of SVD



Four Fundamental Subspaces



Row Space and Columns Space

Lemma 25.1  Suppose  ,  


where 

         are linearly independent,    are linearly independent.

Then Row(A) = ,    C(A) = .

A =
k

∑
j=1

xjy⊤
j

x′￼js y′￼js
span{y1, …, yk} span{x1, …, xk}

Lemma 25.2 (equivalent)  Suppose  ,  


where ,  have full rank.


Then  C(A) = , Row(A) = Row .

A = XY⊤

X ∈ ℝm×r Y ∈ ℝn×r

C(X) (Y⊤)



Four Fundamental Subspaces



Rank = # of Nonzero Singular Values

rank(A) = # of nonzero singular values (counting multiplicity)

rank(A) ________  # of nonzero eigenvalues. 

Example: 

   A = 

 Eigenvalues are __________,
  # of nonzero eigenvalue is  _______
  rank(A) = ______. 

[0 1
0 0]



Judgement

The number of singular values is the same as the rank of the matrix.

The number of singular values of an  matrix is  or .m × n m n

The rank of an  matrix is the number of nonzero eigenvalues.m × n



Part IV Geometry



Facts About Eigenvalues

 In geometrical interpretation of eigenvectors, we view the 

matrix as a linear transformation between ____and ______. 

Why?


Two geometrical views:


—1st view: “Unchanged” during “change”;  fixed point.

     This motivation only applies to “self-transformation”. 


—2nd view: “Tiles” —> similar tiles with stretching. 




Two-Space Transformation: Standard Basis

Consider A ∈ ℝ3×2 .
A can be viewed as a linear transformation:   ℝ2 → ℝ3

Geometrical view: 
Changing tiles: ______________  to ___________________



Two-Space Transformation: Arbitrary Basis

Consider an arbitrary basis.

Changing tiles:  _____________   to ____________________ 



Two-Space Transformation: Arbitrary Basis

Wish: Find basis s.t. shape of “tiles” do NOT change (too much).
Changing tiles:  _____________   to ____________________ 

Mathematically:

Find orthonormal basis s.t.  is ________________{v1, v2} {Av1, Av2}



Summary Today (Write Your Own)

One sentence summary:

Detailed summary:



Summary Today (Write Your Own)

One sentence summary:

Detailed summary:

We learn SVD today.

1) SVD is a decomposition of any real matrix A (can be rectangular) s.t.

                           ,

       where  
                      

  

   1b) Compact SVD: 


2) Relation of singular values/vectors and eigenvalues/eigenvectors: 
       


3)  Number of singular values is _______.


4) Steps of computing SVD: 

A = UDV⊤


