Lecture 03

Systems of Linear Equations I: Forms and Elimination

Instructor: Rouyu Sun

In the last lectures …

- Definition of norm and dot (inner product)
- Calculation of vector norms and inner products
- Real-world examples

Today ... System of **Linear Equations!**

After this lecture, you should be able to

- 1. Write the 4 forms of systems of linear equations 4 forms uld be able to
ms of linear equations
<u>Matrix-vector product</u>
Aussian elimination
- 2. Write the various forms of **matrix-vector product**
- 2. Solve a linear system by Gaussian elimination

Reading Material: Logic and Proof

Difficulties in Linear Algebra, partially due to... lack of training of proving. —or simply, lack of LOGIC.

Material to check:

https://www.math.toronto.edu/preparing-for-calculus/ 3_logic/we_2_if_then.html

logic is about teling^a completestoory

Part I System of Linear Equations

Linear System of Equations: Preliminary School Example

Problem (Chicken-Rabit Problem 鸡兔同笼) There are 35 heads and 94 feet in a cage. How many chickens and how many rabbits are there? Assumption: Each chicken has 1 head and 2 feet, and each rabbit has 1 head and 4 feet. (Chick
35 head Criicker
35 heads
chickens bit Problem 鸡
94 feet in a cage
how many rabbi **Example**
Dit Problem 鸡兔同笼)
<u>4 feet in a cage</u>
now many rabbits are the
n has 1 head and 2 feet $\gamma + y = 35 = 2 - x \pi x \omega$ two-varible $2 x+4 y =$ $-y = 94$ order-1 \mathcal{S} ustemoff equations

Definition (Linear Equations)

A **linear equation** with *n* unknowns is the equation of the form

$$
a_1x_1 + a_2x_2 + \cdots + a_nx_n = b
$$

or
$$
\overrightarrow{a} \cdot \overrightarrow{x} = b
$$

where $a_1, a_2, ..., a_n, b$ are real numbers and $x_1, x_2, ..., x_n$ are variables

$$
\vec{a} = [a_1, ..., a_n], \vec{a} = \text{Ex}_1, ..., \text{X}_n)
$$

coefficients

$$
x+y=t \qquad |x \ge
$$

System of Linear Equations	$x+y=1$	$x \leq 2$
Definition (System of Linear Equations)	An $m \times n$ system of linear equations is a <u>collection</u> of m linear equations with n variables	
$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$	$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$	\cdots
$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$		
where all a_{ij} and b_i are real numbers and x_1, x_2, \ldots, x_n are variables		
(A current of linear equations is also called a linear system)		

(A system of linear equa2ons is also called a **linear system**)

Exercise (Linear Equations)

Is the following a linear system?

$$
\begin{array}{ll}\n\text{el (Linear Equations)} \\
\text{Ilowing a linear system?} \\
\begin{cases}\n-a_{11} + 4a_{12} = 2a_{13} + 3a_{14} \\
5a_{11} + 3a_{12} = a_{13} + 3a_{14}\n\end{cases} \quad a_{11}, a_{12}, a_{13}, a_{14} \text{ are variables}\n\end{array}
$$

(such as the weight vectors in our movie preference example)

What is New in this Course?

You learned these in middle school (or even primary school).

What more can we study? What will be new?

1. Yes, you can solve system of equations in 2 variables. What about 5 variables? What about 100 variables? for computers

What is a general method to solve an any-variable system?

2. Applica2ons. Where are the applica2ons in real-world? Buying fruit? neory → : Doesyour metheddwayswork ? on you pove rt ? etc .

Part II Matrix-Vector Product & Four Forms of Linear Systems *Matrix-Vecto*
Four Forms
r Systems

Textbook Sec. 1.3 (only first half) and Sec. 2.1

Column-Vector Form

Row-form: Simplify by Product

Motion: Make (F1), (F2), (F3) simple.

\n
$$
\left\{\n\begin{array}{l}\n\chi_{1} + \chi_{2} = 14 & \text{power} \\
\chi_{1} + \chi_{2} = 26\n\end{array}\n\right.\n\quad\n\left(\n\begin{array}{l}\n\chi_{1}, \chi_{2} = 26 \\
\chi_{2}, \chi_{1} + 4\chi_{2} = 36\n\end{array}\n\right.\n\quad\n\left(\n\begin{array}{l}\n\chi_{1}, \chi_{2} = 26 \\
\chi_{2}, \chi_{2} = 26\n\end{array}\n\right.\n\quad\n\left(\n\begin{array}{l}\n\chi_{2}, \chi_{2} = 26 \\
\chi_{2}, \chi_{2} = 26\n\end{array}\n\right.\n\quad\n\left(\n\begin
$$

Motivation: Make $(F1)$, $(F2)$, $(F3)$ simple. Define $A = \begin{bmatrix} 1 & 1 \ 2 & 4 \end{bmatrix}$, b= $\begin{bmatrix} 16 \ 94 \end{bmatrix}$, $\chi = \begin{bmatrix} x_1 \ x_2 \end{bmatrix}$.

(F1)
$$
\{X_1 + X_2 = 16
$$
 work $Ax = b$
\n $2X_1 + 6X_2 = 94$ **need to define** $Ax = \begin{bmatrix} X_1 + X_2 \ 2X_1 + 4X_2 \end{bmatrix}$
\n(F2) $\{[0,1] \cdot [X_1X_2] = 16$ **most** $Ax = b$
\n $(F2) \{[\frac{1}{2}]X_1 + [\frac{1}{4}]X_2 = [\frac{16}{94}] \text{ most $Ax = b$
\n**need to define** $Ax = [\frac{1}{2}x_1 + 6x_2]$
\n $(F3) \begin{bmatrix} \frac{1}{2} \end{bmatrix}X_1 + [\frac{1}{4}]X_2 = [\frac{16}{94}] \text{ What $Ax = b$
\n**need to define** $Ax = [\frac{1}{2}]X_1 + [\frac{1}{4}]X_2$
\nhencek: Provions two pages: (F1) (\Leftrightarrow (F2), (F1) (\Leftrightarrow (F3))
\n \Rightarrow (F2) (\Leftrightarrow (F3)) \vee **NoT stroightforward why the holds** !
\n \Rightarrow **Introduce » NoR relobin a series is memoryle**.$$

Three Definitions of Motry. - Vector Product
\nIgence equations. Summer's He last page.
\n
$$
A = \begin{bmatrix} 1 & I_{0} \\ 2 & I_{0} \end{bmatrix}, X = \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + Y_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + Y_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + Y_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + Y_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{2} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{2} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{2} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{2} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1 & I_{0} \\ 2X_{1} + X_{2} \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 1
$$

Definition 4.1 (Matrix)

An $m \times n$ matrix A is a rectangular array of numbers with m rows and *n* columns in the following form:

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times n} \in \mathbb{R}^{m \times n}.
$$

where all a_{ij} are scalars.

Def 4.2 (Dimension): For an $m \times n$ matrix, the dimension of A is $m \times n$ (reads "m by n"). For an $m \times 1$ vector, the dimension of the vector is m, or $m \times 1$. wrong : dim is mn ; e . \boldsymbol{J} . dm is 200. Correct: dm is 10x20

Matrix

the contract of the contract of the contract of

$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 4 \end{bmatrix}
$$

$$
\left[\begin{array}{cccc} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{array}\right]
$$
 or
$$
\left(\begin{array}{cccc} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{array}\right)
$$

 \blacklozenge

Matrix Conventions (Directly Copied from Lecture 4)

- For a matrix A , a_{ij} is called the (i, j) -th entry (element) of A $i \times A$, a_i Directly Copied from Lecture

d the (*i*, *j*)-th entry (element) of A

(2,3)-th entry (element) of A

1, B, C, ...

a square matrix; a rectangular matrix
 $\overrightarrow{\lambda}$ if
- Matrices are denoted by *A*, *B*,*C*,…
- When $m = n$, *A* is called a *square matrix;* a *rectangular matrix o.w.* $m = r$ 方峰

。

]

- When all entries are zeros A is called a *zero matrix* (similar to zero vector) • When $m = n$, *A* is called a **square**

• When all entries are zeros *A* is call

(similar to zero vector)

• When $m = 1$, *A* is a row vector

• When $n = 1$, *A* is a column vector $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ d a zero mo
 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- When $m = 1$, A is a row vector
-

In moth

• When $m = n = 1$, A can be considered as a scalar $n = 1$, A is a column vector
 $m = n = 1$, A can be considered as a scalar [1.5] A is a row vector $\begin{bmatrix} 1, 2, 3 \end{bmatrix}$

A is a column vector $\begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$

= 1, A can be considered as a scalar $\begin{bmatrix} 1,5 \end{bmatrix}$

(x) nothx = scolor, In coding, No T. (x) moth) r, In coding Then $m = n = 1$, A can be considered as a sca
In moth, $|x|$ metrix = scolor, In coding, No T.

Relation of Matix, Vector & scaler

Motnx: mxn rectorgulor Vector: MXI or IXM motrix $Scolor :$ 1×1 matrix

cloris ^a vectos specid A rector is a specid matrix

Matrix Conventions

• Column of a matrix
$$
\mathbf{a}_j = \begin{bmatrix} A_{1j} \\ \vdots \\ A_{mj} \end{bmatrix}
$$

• Row of a matrix
$$
\underline{\mathbf{a}}^{(i)} = \begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}
$$

Exercise: How to write A, in terms of the above notation?

Matrix v.s. Column Vectors

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
$$

\n
$$
\vec{a} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \vec{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \vec{a} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \vec{a} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}
$$

\nExercise. Write A in terms of \vec{a} , \vec{a} , \vec{a} , \vec{a} , \vec{a}
\n
$$
\underline{\text{Wring}} = A = \vec{a} + \vec{a} + \vec{a}
$$

\n
$$
\underline{\text{Hring}} = \vec{a} + \vec{a} + \vec{a}
$$

\n
$$
\underline{\text{Hring}} = \begin{bmatrix} \vec{a} \\ \vec{a} \end{bmatrix}, \vec{a} \end{bmatrix}, \vec{a} = \begin{bmatrix} \vec{a} \\ \vec{a} \end{bmatrix}
$$

\n
$$
\underline{\text{Momin}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

\n
$$
\underline{\text{Momin}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \
$$

Matrix v.s. Row Vectors

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
$$

\n
$$
\vec{a}^{(0)} = [1, 2, 3]
$$

\n
$$
\vec{a}^{(1)} = [4, 5, 6]
$$

\n
$$
A = \begin{bmatrix} \vec{a}^{(1)} \\ \vec{a}^{(2)} \end{bmatrix}
$$

\n
$$
m+n\lambda = \text{Column-Vector of row-vechni}
$$

\n
$$
\text{Pixtend's notion of "vector"}
$$

Definition of Row-Column Vector Product

Two vector

\nUse:

\n
$$
\vec{a}^{(i)} = [1, 2],
$$
\n
$$
\vec{x} = \begin{bmatrix} x_i \\ x_i \end{bmatrix}
$$
\nDiv. $\vec{a}^{(i)} = [1, 2],$

\nDiv. $\vec{a} \times [1, 2],$

\nProduct of row vector and column vector

\nDefinition:

\n
$$
\vec{a} \times \vec{a} = [a_1, a_2],
$$
\n
$$
\vec{x} = \begin{bmatrix} x_i \\ x_i \end{bmatrix}
$$
\nActivity product is specified as

\n(nothing, this is a way to be a reasonable value).

\nSince

\n
$$
\vec{a} \cdot \vec{b} \text{ and } \vec{a} \vec{b} \text{ represent different moments}
$$

Extending	Def	6	General	Case
\n $A = \begin{bmatrix} 1 & b \\ 2 & \varphi \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ \n	collective of same of products			
Def1. $A = \begin{bmatrix} x + x_2 \\ 2x_1 + y_2 \end{bmatrix}, \quad A = \begin{bmatrix} 0, -0, 0 \\ 0, 1, -0, 0 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad A = \begin{bmatrix} 0, x_1 + 1, 0, x_2 \\ 0, -1, x_1 + 1, 0, -1, 0 \end{bmatrix}$ \n				
Def2. $A = \begin{bmatrix} 0, 1, 1, 1, 2, 3, 3 \\ 0, 2, 3, 1, 2, 3, 1, 2, 3, 3 \end{bmatrix}, \quad A = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad \vec{a}^{(0)} = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad A = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad B = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad C = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad C = \begin{bmatrix} \vec{a}^{(0)} \\ \vec{a}^{(0)} \end{bmatrix}, \quad C = \$				

Definition I of Matrix-Vector Product: Row-form

Definition 6.1 (Matrix-vector product Def-1)

$$
A \cdot m \times n
$$
 metriz, \vec{b} i \overrightarrow{a} x 1 Vektor,
Suppose $A = \overline{a}$ \overline{a} \overline{a} \overline{a} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} \overline{b} \overline{b} \overline{b} \overline{a} \overline{b} \overline{b}

<u>Remork:</u> \vec{a}^{ω} is a row vector. \vec{b} is a column vector, thus rigorously specking,
we connot perform an "inner product"($\vec{a}^{\omega}, \vec{b}$), instead, we shall
perform the inner product of $(\vec{a}^{\omega})^T$ and \vec{b}

$$
[m \times n] \cdot [n \times 1] \longrightarrow m \times 1
$$

Matrix Representation of Linear System

Consider a General Linear System ...

Definition II of Matrix-Vector Product: Column-form

Definition 6.2 (Matrix-vector product Def-2)

A a
$$
m \times n
$$
 matrix, \vec{w} is $\vec{n} \times 1$ vector.
\n $A = [\vec{a}, \vec{a}, \vec{a}, ..., \vec{a}]$,
\n $\vec{n} \times \vec{a} \times \vec{a}$
\nThen $\vec{A} \cdot \vec{w} \stackrel{\text{d}}{=} w_i \vec{a}_1 + ... + w_n \vec{a}_n$
\nRemark. Compare there product and the above.
\n $I_f \vec{u} = [u_1, u_2, ..., u_n] \in R^{\text{ker}}$, then $\vec{u} \cdot \vec{a} = w_i \frac{u_1 + ... + w_n u_n}{u_n \vec{a}_1 + ... + w_n \vec{a}_n}$.
\nA U is a three complement of columns.

Claim: Def. 6.1 and Def. 6.2 are equivalent (i.e. they produce the same result).

More Examples $\boldsymbol{\zeta}$ $3x5$ $A = \begin{bmatrix} 1 & 4 & 2 & 3 & 5 \\ -2 & 1 & 3 & 0 & -1 \\ 0 & 7 & 4 & -2 & 4 \end{bmatrix}$, $u = \begin{bmatrix} -2 & 4 & 5 \\ 0 & 5 & 1 \end{bmatrix}$ A U = $\begin{bmatrix} 1*1+4*(-2)+2*0+3*5+5*(-1) \\ (-2)*1+1*(-2)+3*0+0*5+(-1)*(-1) \end{bmatrix}$ $\left[0*1+7*(-2)+(-1)*0+(-2)*5+4*(-1)\right]$ Or: A u = $1 \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ + (-2) $\cdot \begin{bmatrix} 4 \\ 1 \\ 7 \end{bmatrix}$ + 0 $\cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$ + 5 $\cdot \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$ + (-1) $\cdot \begin{bmatrix} 5 \\ -1 \\ 4 \end{bmatrix}$ $=\begin{bmatrix} 3 \\ -3 \\ -28 \end{bmatrix}$ $\begin{bmatrix} 0 & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ d \end{bmatrix}$

Summary: Four Forms of Linear Systems

Part III Idea of Elimination

Partly from Sec. 2.2

Solve System of Linear Equations

More General …

Example (Solving 03 x 3 system)

\n
$$
\begin{array}{rcl}\n\text{(2x)} &+ 4y - 2z &=& 2 & \textcircled{1} \\
& \frac{4x}{x} + 9y - 3z &=& 8 & \textcircled{2} \\
&- 2x - 3y + 7z &=& 10 & \textcircled{3} \\
\text{Write down map: step: & Ethinoth } \text{M2.} \\
\text{So } & -0 \times 2 & & \textcircled{3} & \textcircled{4} & \textcircled{5} \\
\text{So } & + \textcircled{7} & & \textcircled{9} & \textcircled{5} & \textcircled{2} & \textcircled{5} & \textcircled{5} \\
\text{So } & + \textcircled{9} & & \textcircled{9} & \textcircled{1} & \textcircled{2} & \textcircled{5} & \textcircled{5} & \textcircled{6} \\
\hline\n\text{(e)} & & & & \text{the equation} & & \\
\hline\n\text{(f)} & & & & & \text{the equation} & \\
\hline\n\text{(g)} & & & & & \text{the equation} & \\
\hline\n\text{(h)} & & & & & \text{the equation} & \\
\hline\n\text{(i)} & & & & & & \\
\hline\n\text{(ii)} & & & & & & \\
\hline\n\text{(b)} & & & & & & \\
\hline\n\text{(c)} & & & & & & \\
\hline\n\text{(d)} & & & & & & \\
\hline\n\text{(e)} & & & & & \\
\hline\n\text{(f)} & & & & & & \\
\hline\n\text{(g)} & & & & & & \\
\hline\n\text{(h)} & & & & & & \\
\hline\n\text{(i)} & & & &
$$

Hint to solve
$$
nxn
$$
 system?

\nFirst, $Q_{1}m$ rate, $Var(dMe X)$,

\nthe get $(n-1) \times (n-1)$ system, $W_{1}m$ variable

\n $x_{2} \rightarrow x_{n}$

\nSecond, solve $(n-1) \times (n-1)$ system.

\nIdea a straight $formad$.

\nClassian Et in both.

Definition (Coefficient Matrix)

```
Given a linear system,
```

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\dots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
$$

The **coefficient matrix** of the system is an $m \times n$ matrix

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times n}
$$

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$ … Definition (Coefficient Matrix) Given a linear system, ?

The **coefficient matrix** of the system is an $m \times n$ matrix

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times n}
$$

Definition (Augmented Matrix) the corresponding augmented matrix is $\begin{bmatrix} & & & \mathbf{N}^T \mathbf{N}^T \mathbf{N}^T \end{bmatrix}$ Given a linear system, $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$ … $\left\{\n \begin{array}{ccc}\n \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 \mathbf{1} & \mathbf{1} & \mathbf{1} \\
 \mathbf{1} & \mathbf{1} & \mathbf{1}\n \end{array}\n \right\}$

Consider $2x_1 + 3x_2 = 3$,

What is the coefficient matrix? What is the augmented matrix?

Consider
$$
2x_1 + 3x_2 = 3
$$
,
\t $x_1 - x_2 = 4$
\tWhat is the coefficient matrix?
\t $\hat{A} = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$
\t $\begin{bmatrix} A | b \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Today, we have learned:

—Formulation of systems of linear equations

—Matrix-vector product and four forms of linear system

 —Gaussian elimina2on to solve a linear system Idea , not detailed procedare The Mayneson of Systems of linear equations

Atrix-vector product and four forms of linear s

Here, not detailed procedure

Ation: (next time)

The Gaussian elimination always work?)

Question: (next time)

Does Gaussian elimination always work?