Lecture 04

Matrix Operation I: Multiplication, Transpose and Partition

Instructor: Ruoyu Sun

Today's Lecture: Outline

Today ... **Matrix Multiplication!**

Outline:

- 1. Matrix multiplication: Properties
- 2. Matrix multiplication and transpose
- 3. Block partition and matrix multiplication

Today ... Matrix Multiplication!

After this lecture, you should be able to

1. Apply the properties of matrix multiplication ⼀

2. Apply transport transpose in matrix opera

3. Conduct multiplication of partitioned matrices We operations

Feartitioned

 —Especially: Write the expressions of valid vectorvector, matrix-vector, matrix-matrix multiplication

Part 1 Matrix Multiplication And Properties

Matrix Multiplied by a Matrix

Can a matrix be multiplied by a matrix?

More than one set of weights …

Matrix Multipplied by a Matrix

\nCan a matrix be multiplied by a matrix?

\nMore than one set of weights ...

\n
$$
F_{1}ht, \quad \text{there's zero, then } \text{one, } \text{cusp.}
$$
\n
$$
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 8 & 7 \end{bmatrix}, \quad \begin{bmatrix} 10 & 15 \\ 10 & 31 \end{bmatrix}
$$
\n
$$
A \times B =
$$

 $Extro$ requirement . Want outcome to be matrix. $(No7$ vector, $No7$ Scelor)

$$
A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{
$$

Definition 4.11 (Matrix Product) Let $A \in \mathbb{R}^{m \times n}$ and $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_l] \in \mathbb{R}^{n \times r}$, then the matrix product of A by B is a $m \times r$ matrix defined by

$$
AB = [Ab_1, Ab_2, \cdots, Ab_r].
$$

Matrix Multiplied by a Matrix

Definition 4.1 (Matrix multiplication) Suppose A, B are two matrices. $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$,
 $A = (a_{ij})_{max} = (\frac{\vec{a}^{(i)}}{\vec{a}^{(m)}})$, $B = (b_{ij})_{n \times k} = (\overline{b}_{1})_{n \times k}$

The produce $C = AB$: $C_{ij} = \frac{a^{(i)}b_{j}}{\prod_{k=1}^{n}a_{ik}b_{kj}}$ The dimensions have to mat **Remark**

> 1. Matrix product is a natural generalization of the matrix-vector product. 2. AB exists only and if only the number of columns of A equal to the number of rows of B .

Principle: Dimension Match

Most important principle of matrix multiplication: Dimensions must match!

Valid multiplication: dimensions match.

Invalid multiplication: dimension do NOT match.

A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. All entries are 1. Which of these matrix operations are allowed, and what are the results?

Matrix Multiplied by a Matrix

How Many Multiplications? (Computation Complexity)

Suppose A, B are two matrices. $A: m \wedge n$, $B: n \times k$ To compute AB, how many multiplications are needed? $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix}$ $B = \begin{bmatrix} x & x & x \\ x & x & x \end{bmatrix}$ $[a, b] [c]$
= a.c t b.d $A \cdot B = \left[\begin{array}{cc} x^3 & x^2 \\ x & x & x^2 \end{array} \right]$ # of mltpletty is $2 \times 4 \times 2 = 16$. $\begin{pmatrix} n \\ j \end{pmatrix}$, $\begin{pmatrix} n \\ j \end{pmatrix}$, $\begin{pmatrix} -1 \\ k \end{pmatrix}$, $\begin{pmatrix} n \\ k \$

$$
J=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

Properties Let $A \in \mathbb{R}^{m \times n}$, $I \in \mathbb{R}^{n \times n}$ is an identity matrix $AI = A$

Venty yousef

Multiplied by a zero matrix?
 $O = \begin{bmatrix} 0 & -0 \\ 0 & 0 \end{bmatrix}$. is like "1" in the number A 0 = \bigcap

Matrix Multiplication Properties with Bugs

Matrix Multiplication Properties with Bugs
\nProperties Let
$$
A \in \mathbb{R}^{m \times n}
$$
, $B, C \in \mathbb{R}^{n \times L}$, $\alpha \in \mathbb{R}$
\n(1) $A(B + C) = AB + AC$ Left Distributive
\n(2) $(B + C)A = BA + CA$ Right Distributive
\n(3) $(AB)^{T} = B^{T}A^{T}$ through
\n(4) $\alpha(AB) = (\alpha A)B = A(\alpha B)$
\n(5) $(AB)C = AB$
\n $BCAB = ACB$
\n $BCAB$

Matrix Multiplication Properties

some os left-matriply **Matrix Multiplication Property 1: Proof** Properties Let $A \in \mathbb{R}^{m \times n}$, $B, C \in \mathbb{R}^{m \times n}$, $\alpha \in \mathbb{R}^{n}$

(1) $A(B + C) = AB + AC$ $\overbrace{AB}^{\text{max}} = \overbrace{A}^{\text{max}} \overbrace{b_1, -1}^{\text{max}}$, $\overbrace{b_k}^{\text{max}}$ and $\overbrace{b_1, -1}^{\text{max}}$, $\overbrace{b_k}^{\text{max}}$ and $\overbrace{b_k}^{\text{max}}$ and $\overbrace{b$ (1) $A(B+C) = AB + AC$ $\mathcal{Q} = [\mathbf{b}_1, \cdots, \mathbf{b}_l], C = [\mathbf{c}_1, \cdots, \mathbf{c}_l],$ then β \rightarrow $C = [(b_1 + c_1), (b_2 + c_2), \ldots, (b_l + c_l)].$ $A(B+C) = [A(b₁ + c₁), A(b₂ + c₂), ..., A(b₁ + c₁)].$

On the other hand,

 $AB = [Ab₁, Ab₂, \cdots, Ab₁], AC = [Ac₁, Ac₂, \cdots, Ac₁].$

6. Prove
$$
AB + AC = A(B+C)
$$

\nonly need to prove:

\n
$$
\frac{AB + AC = A(B+C)}{B + B + AC} = \frac{A(B, +C)}{B + C}
$$
\nThus way:

\n
$$
Q = \frac{Q \cdot T}{P \cdot (B + C)}
$$
\n
$$
P = \begin{bmatrix} \overline{a}^{T} \\ \overline{b}^{T} \\ \overline{a}^{T} \\ \overline{b}^{T} \\ \overline{b}^{T} \\ \overline{c}^{T} \\ \overline{d}^{T} \\ \overline
$$

 ∞

 \mathbf{A}

Properties Let
$$
A \in \mathbb{R}^{m \times n}
$$
, $B, C \in \mathbb{R}^{n \times l}$, $\alpha \in \mathbb{R}$

$$
(1) A(B+C) = AB + AC
$$

Proof of (1): (The others are exercises) Suppose

$$
B=[\mathbf{b}_1,\cdots,\mathbf{b}_l], C=[\mathbf{c}_1,\cdots,\mathbf{c}_l],
$$

then

$$
B+C=[({\bf b}_1+{\bf c}_1), ({\bf b}_2+{\bf c}_2),\ \ldots\ ,\ ({\bf b}_l+{\bf c}_l)].
$$

Thus

$$
AB + AC = [Ab1, Ab2, ..., Ab1] + [Ac1, Ac2, ..., Ac1]
$$

= [A(b₁ + c₁), A(b₂ + c₂), ..., A(b₁ + c₁)]
= A(B + C)

Properties Let
$$
A \in \mathbb{R}^{m \times n}
$$
, $B, C \in \mathbb{R}^{n \times l}$, $\alpha \in \mathbb{R}$

(3) $(AB)^T = B^T A^T$

Proof of (3): (The others are exercises)

$$
A=(a_{ij})_{m\times n}, B=(b_{ij})_{m\times n}
$$

The (i, j) -entry of AB is

and the (j, i) -entry of $(AB)^T$ is

 (j, i) -entry of $B^T A^T$ is

Properties Let
$$
A \in \mathbb{R}^{m \times n}
$$
, $B, C \in \mathbb{R}^{n \times l}$, $\alpha \in \mathbb{R}$

\n(3) $(AB)^{T} = B^{T}A^{T}$

\nProof of (3): (The others are exercises)

\n $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$.

\nThe (i, j) -entry of AB is $\sum_{k=1}^{n} a_{ik}b_{kj}$.

\nand the (j, i) -entry of $(AB)^{T}$ is $\sum_{k=1}^{n} a_{ik}b_{kj}$.

\n (j, i) -entry of $B^{T}A^{T}$ is $\sum_{k=1}^{n} b_{kj}a_{ik} = \sum_{k=1}^{n} a_{ik}b_{kj}$.

\nThus, (j, i) -entry of $(AB)^{T}$ and $B^{T}A^{T}$ are the same.

You might be tired of seeing these properties over and over again.

Of course, these properties should hold for any product, right?

What property does matrix multiplication NOT have? Question**:**

[Compared to: scalar product; vector inner product]

Matrix Multiplication: AB and BA are NOT Equal

1. (AB exists does not imply that
$$
\overline{BA}
$$
 exists) (x, z) (z, z)
\nExample:
\n
$$
A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, AB = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, (2 \times 2)(2 \times 2)
$$
\n
$$
BA does not exist.
$$
\n2. Even if both \overline{AB} and \overline{BA} exists, they are generally not equal
\n $(AB \neq BA)$.
\nExample:
\n
$$
A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}, AB = \begin{bmatrix} ae+bg-1 \\ 0 & 1 \end{bmatrix}, BA = \begin{bmatrix} ee+fe-2 \\ 0 & 0 \end{bmatrix}
$$
\n
$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$
\nQuestion: Do there exist A, B such that AB = BA?

Missing Property of Matrix Multiplication

What property does matrix multiplication NOT have?

[Compared to: scalar product; vector inner product]

Answer. matrix multiplication is NOT commutative. In Chinese: 矩阵乘积不是可交换的。 **ing Property of Mat**
property does matrix n
ed to: scalar product; vect
(matrix multiplication)
iese: 矩阵乘积不是 **roperty of Matrix Multiplication**
ty does matrix multiplication NOT have?
calar product; vector inner product]
ix multiplication is NOT commutative.
矩阵乘积不是可交换的。

non - commutatue algebma → 部分代加.

Rules for Vector and Matrix Multiplication

3 Rules of Real Number Multiplication: commutative, associative, distributive,.

In Chinese: 交换律, 结合律, 分配律

Scolar Versy $\alpha(\nu \cdot \omega) = (\alpha \nu) \cdot \omega$

Part 2 Transpose and Matrix Multiplication

Matrix Transpose

Matrix Transpose

Transpose and Row-form, Column-form

Properties of Transpose

Symmetric Matrix

Vector-vector products

Vector Outer Product

Matrix Multiplication and Inner Product Matrix Multiplication and Inner Product

Inner product/is a special case of matrix multiplication. Matrix Multi

Reading: Philosophy of Notation Reading
Com's razor p

Occam's razor principle:

Make things as simple as possible, but not simpler. 如无必要,勿增实体 **Reading: Philosophy of Notation

ceam's razor principle:**

lake things as simple as possible, but not simpler.

luralitas non est ponenda sine neccesitate.

Pluralitas non est ponenda sine neccesitate.

Application 1: Idea / Vector multiplication and matrix multiplication shall use the same notation and definition, if possible. **Reading: Philosophy**
 Occam's razor principle:

Make things as simple as possible,
 $\begin{align*}\n\overrightarrow{H} \rightarrow \overrightarrow{H} \$ Oceam s razor principie:
Make things as simple as
如无必要,勿增实体
Pluralitas non est ponen
Application 1:
Ldea ∕ector multiplication
shall use the same notation undertightarian and the same notation and definition Sible, but not simpler. Lidea
Shall u **Ocean's razor principle:**

Make things as simple as possible, but
 $\sqrt[n]{\pm \sqrt[n]{\pm \frac{1}{2}}}$, $\sqrt[n]{\pm \sqrt[n]{\pm \frac{1}{2}}}$

Pluralitas non est ponenda sine necessarily

Application 1:
 Lidea Vector multiplication and definition
 1:

Formultiplication and de

Formal matrix multiplication

Formultiplication

That is NOT cons

u[⊤]**v** $\}$ just a matrix multiplication. So keep it.

u ⋅ **v** is a notation that is NOT consistent with matrix multiplication, so avoid using it. multiplication, so avoid using it. (Lpdets) one)

 $\langle u, v \rangle$ is NOT consistent with matrix multiplication, but it's consistent with "matrix inner product", so still keep it. **Oceam's razor principle:**

Make things as simple as possible, but not simpler.

如元必要, 勿增实体

Pluralitas non est ponenda sine neccesitate.

Application 1:
 Loga /vector multiplication) and definition, if possible.

shal **Example 1:**
 Example 1: but it'
keep

 Hw 1 nearset

Part 3 Block Partition and Matrix Multiplication

Sometimes, it will often be convenient to think about matrices defined in terms of other matrices.

For example, we already saw augmented matrices, defined in terms of a coefficient matrix and a vector of righthand sides.

$[A|b]$.

Another example: express a matrix by vectors

Example 1

Let's see a different example, with similar flavor of "partition".

$$
P = \begin{bmatrix} -1 & -1 & -1 & -1 \\ 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & 2 \\ 2 & 2 & 2 & -1 \end{bmatrix}
$$

What do you observe?

Can you simplify the expression?

Example 2

$\left[\begin{array}{cc|cc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right]$

Can you simplify the expression?

4 by 6 matrix 2 by 2 blocks give 2 by 3 block matrix

Definition

The matrix

$$
A = \begin{bmatrix} A_{11} & \cdots & A_{1t} \\ \vdots & \ddots & \vdots \\ A_{s1} & \cdots & A_{st} \end{bmatrix}
$$

is a partition of matrix with $s \times t$ blocks if the matrices A_{ij} satisfies

(1) For each fixed *i*, the number of rows of all A_{ij} are equal.

ź

(2) For each fixed j, the number of columns of all A_{ij} are equal.

The matrix A_{ij} is called the (i, j) -block of A.

Make sure the blocks are the right sizes: (i) blocks in the same (block) row have same # of rows, (ii) blocks in the same (block) column need to have same # of columns.

Multiplication of Partitioned Matrices

Rule of thumb:

You can treat blocks as "scalars" to perform matrix-multiplication, with an extra rule:

When the blocks multiply, the dimensions must match.

Example

Block multiplication If blocks of A can multiply blocks of B , then block multiplication of AB is allowed. Cuts between columns of A match cuts between rows of B .

$$
\begin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} \ B_{21} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} \ A_{21}B_{11} + A_{22}B_{21} \end{bmatrix}.
$$

 (4)

Example 3

If

then

$$
A_{11} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 5 & -1 & 3 \\ -2 & 1 & 0 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}
$$

$$
A_{21} = \begin{bmatrix} 1 & 5 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 7 & -2 & 3 \end{bmatrix}, \quad A_{23} = \begin{bmatrix} 2 \end{bmatrix}
$$

$$
A = \left[\begin{array}{ccc|ccc} 1 & 2 & 5 & -1 & 3 & 4 \\ 3 & 4 & -2 & 1 & 0 & 6 \\ \hline 1 & 5 & 7 & -2 & 3 & 2 \end{array}\right]
$$

has the $(1, 2)$ -block A_{12} and $(2, 3)$ -block A_{23} . Moreover, the number of rows of all A_{1j} is 2, and the number of columns of all A_{i3} is 1.

Non-example:

$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \qquad \begin{bmatrix} 7 & -2 & 3 \end{bmatrix}
$$

Part 4 Matrix-matrix products

Strang's book Sec 2.4

Multiplication of Matrix-Vector

Matrix-vector product:

 3 forms, correspond to 3 forms of linear systems. Why 3 forms? Recall:

```
Matrix-vector product:
```
Scalar form:

Row-form:

Column-form:

Multiplication of Matrix-Vector

Matrix-vector product:

 3 forms, correspond to 3 forms of linear systems. Why 3 forms? Different ways of partitioning!

Multiplication of Partitioned Matrices

What if we multiply A and B? Q1: What pair of partitions lead to valid multiplication? Q2: What results do we get?

A: whole matrix, row-partition, column-partition B: whole matrix, row-partition, column-partition

9 combinations.

Q1: Among them, which are valid?

Multiplication of Partitioned Matrices

What if we multiply A and B? Q1: What partitions are valid? Q2: What results do we get?

A: whole-matrix, row-partition, column-partition B: whole-matrix, row-partition, column-partition

Q2: Expression of the valid products?

Suppose that A is a $m \times n$ matrix and B is a $n \times r$ matrix. If B is partitioned into columns $B = [\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_r]$, then

$$
AB=[A\mathbf{b}_1, A\mathbf{b}_2, \cdots, A\mathbf{b}_r].
$$

And if A is partitioned into rows

$$
\begin{bmatrix}\n\vec{a}_1 \\
\vec{a}_2 \\
\vdots \\
\vec{a}_m\n\end{bmatrix}
$$

then

$$
AB = \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_m \end{bmatrix} B = \begin{bmatrix} \vec{a}_1 B \\ \vec{a}_2 B \\ \vdots \\ \vec{a}_m B \end{bmatrix}
$$

Important Special Case: Column-form Times Row-form

$$
\begin{bmatrix} a_1 & \cdots & a_n \ 1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} - & b_1 & - \\ & \vdots & \\ - & b_n & - \end{bmatrix} = \begin{bmatrix} a_1b_1 + \cdots + a_nb_n \end{bmatrix}
$$

Example 7.3.4:
\n
$$
\begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 8 & 2 \end{bmatrix}
$$

Example: Sum of Outer Products

Example

Given

$$
X = \begin{bmatrix} 3 & 1 \\ 2 & 4 \\ 1 & 2 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \end{bmatrix}
$$

Compute XY

$$
XY = \begin{bmatrix} 3 & 1 \\ 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 4 & 1 \\ 8 & 16 & 4 \\ 4 & 8 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 10 \\ 10 & 20 & 10 \\ 5 & 10 & 5 \end{bmatrix}
$$

Multiplication's Explanation

Observation:

Form-1 mimics outer product, but consists of inner product

Form-2 mimics inner product, but consists of outer product

Multiplication of Partitioned Matrices

What if we multiply A and B? Q1: What partitions are valid? Q2: What results do we get?

A: whole-matrix, row-partition, column-partition B: whole-matrix, row-partition, column-partition A: *m* × *n*; B: *n* × *k* .

Practice Question: When is each form valid? Where does "dim-checking" play a role?

Reading: Philosophy of Multiplication Rules

Occam's razor principle:

Make things as simple as possible, but not simpler. 如无必要,勿增实体 Pluralitas non est ponenda sine neccesitate.

Application 2:

 $\longrightarrow \dots$

 Idea: Partitioned matrix multiplication shall use the same rules as "non-partitioned multiplication rules" if possible:

—matrix-vector-multiplication

—vector-vector-multiplication

—Scalar vector multiplication

Fortunately, this is the case!! (As we have seen in the past few pages)

Short summary of the past 2 lectures

Lec 03: matrix-vector multiplication Represent $Ax = b$

Lec 04 Part 1-3: matrix-matrix multiplication

 $(+$ transpose; partition)

Lec 04 part 4:

Row/column-partitioned matrix multiplication;

—matrix as sum of outer-products

Will be useful later for representing GE

> Useful in SVD (~ lec 23)

Concluding Section

Summary Today

Write your summary below.

One sentence summary:

Detailed summary:

One sentence summary:

We learned (deeper) matrix multiplication, transpose and partition.

Detailed summary:

—**Matrix multiplication and properties**:

 Two rules: Row times columns; Dimension match. **Properties**: Non-commutative; associative, distributive.

—**Transpose**.

 Transpose and matrix operations (sum, product, partition). Valid vector-vector products: outer product.

—**Block partition:**

Rules of partition and multiplication. Valid partitioned matrix-vector multiplication. Valid partitioned matrix-matrix multiplication.