Lecture 07

Solving Linear System II: Matrix Inverse and LU Decomposition

Instructor: Ruoyu Sun

Today ... Inverse and LU: solution of Ax = b for "good" system (No row exchange)

After this lecture, you should be able to

- 1. Derive elementary matrix
- 2. Apply definition of inverse and properties of inverse
- 3. When no row exchange, write GE as product of elementary matrices
- 4. When no row exchange, derive LU decomposition and matrix inverse

Strang's book: Sec 2.4, 2.5

Part 0 Review

Review: Allowable Operations on Rows

Definition (Elementary Row Operations) (初等行变换)

- (1) [**Multiplication**] Multiply a row by a **non-zero** scalar $A_i \rightarrow$
- (2) [Addition] Add to one row a scalar multiple of another $A_i \rightarrow$
- (3) [Interchange] Swap the positions of two rows

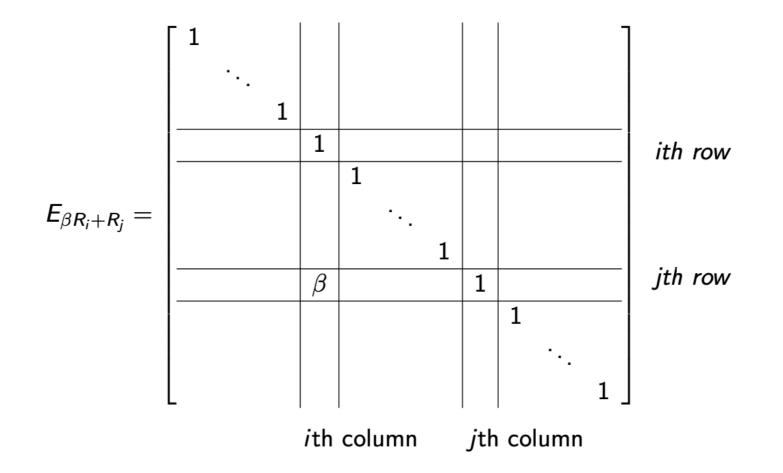
$$\begin{pmatrix} A_i \\ A_j \end{pmatrix} \to$$

Example: 3×3 matrix $A \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \end{bmatrix} \xrightarrow{R_{3}+2R_{1}} \begin{bmatrix} A_{1} \\ A_{2} \\ ZA_{1}+A_{3} \end{bmatrix} \xrightarrow{R_{3}+2R_{1}} ta A$ $R_{3}+2R_{1} ta A$

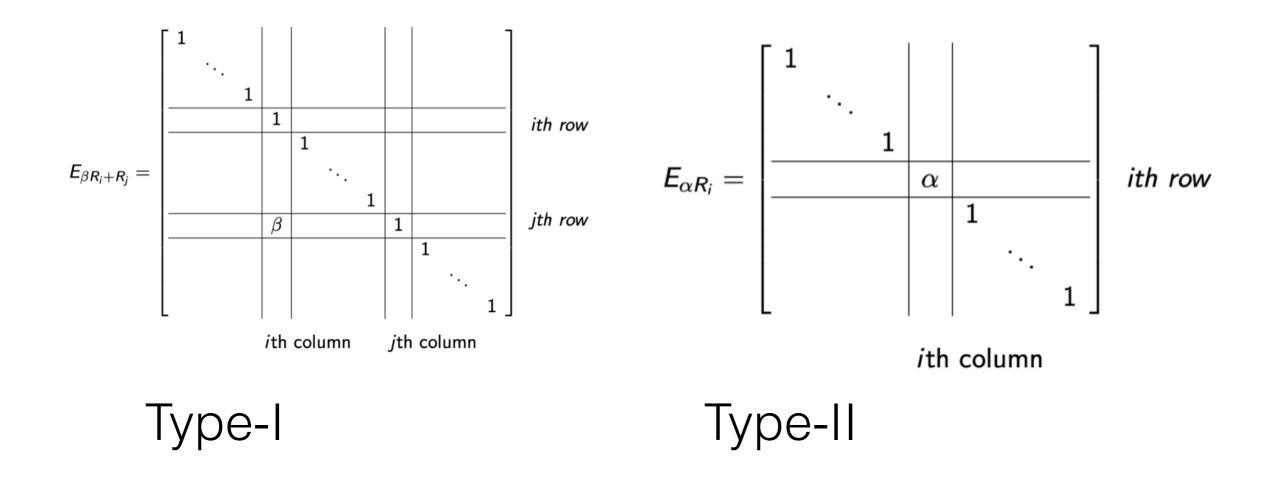
Claim: There exists a matrix $E_{\beta R_i + R_j}$ s.t. applying $R_j \rightarrow \beta R_i + R_j$ (adding a Scaled Row to Another Row) to matrix A is equivalent to multiplying A by $R_j \rightarrow \beta R_i + R_j$

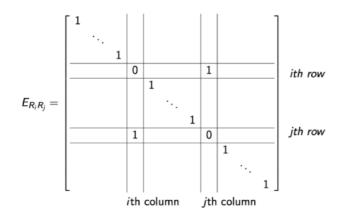
Proof: Consider the following matrix. We can verify that $E_{\beta R_i + R_i}$ A is desired matrix after row operation. Done.

(3) The elementary matrix corresponding to elementary row operation 3 $(R_j \rightarrow \beta R_i + R_j)$ is (elementary matrix type III)



Recall: Three Elementary Matrices





Type-III

Part I Elementary Matrix (2)

Strang's book Sec 2.3

—How to derive elementary matrix

[10 mins]

How to Derive E_{R_i,R_j} from scratch?

$$\begin{cases} a & b \\ c & d \\ e & f \end{cases} \xrightarrow{R_1 \leftrightarrow R_2} \qquad \begin{bmatrix} e & f \\ c & d \\ a & b \end{cases}$$

What A can achieve this?
$$A = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Q: How to quickly write A s.t. left-multiplying any matrix M <==> swapping 1st & 3rd row?

How to Derive E_{R_i,R_i} from scratch?

Assume "swapping rows" can be achieved by matrix multiplication. Then what will it be like?

Trick: Apply it to identity matrix!

$$M \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \implies M =$$

Verify: Multiplying A by M indeed swaps rows of A.

What are we doing here?
Goal: Find A, st. A.M. (where Misnxk)

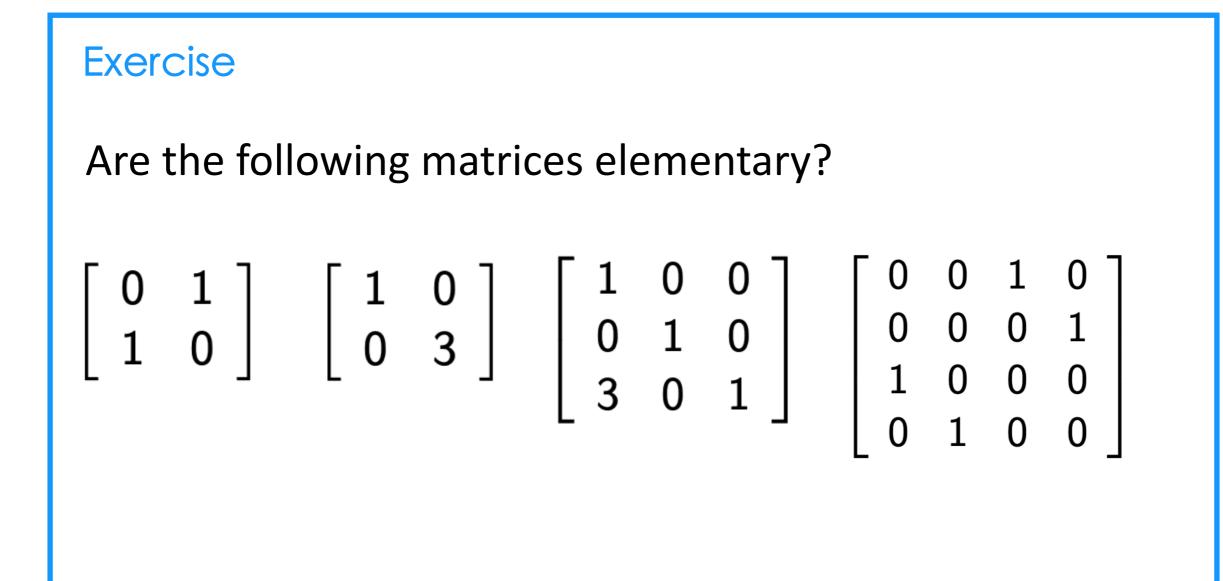
$$\Rightarrow$$
 opplying $R_i \leftrightarrow R_j$ to this matrix M.
 \bigcirc How to compute such a matrix A?
Answer: Apply $R_i \leftrightarrow R_j$ to In, to get a matrix $A \triangleq E_{R_iR_j}$.
This is just a definition: We need to varify it
sotisfies the desired property.
 \bigcirc \bigcirc Does the matrix achieve the desired goal (*)?
 \bigcirc \bigcirc i.e. need to varify:
 $E_{R_iR_j}M$ = the matrix obtained by swopping R_i and R_j .

How to Derive Three Elementary Matrices?

Assume "elementary row operations" can be achieved by matrix multiplication.

Then what will they be like?

Trick: Apply it to identity matrix!



Exercise Are the following matrices elementary? $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

Question: What does the last matrix do if we multiply it by any matrix (with matched dimensions)?

Part II Matrix Inverse

Strang's book: Sec 2.5

—Definition—Solution to Ax = b

Motivation

What are the **benefits** of using matrix/vector notation? —Simpler;

-Can utilize "rules" of simpler objects

e.g. AB = sum of outer products (inner product "rule")

Let's come back to linear systems.

$$ax = b \quad <-->$$

What is the solution?

 $A\mathbf{x} = \mathbf{b}$

Question: Can we write the solution in a similar way?

Definition (Inverse)

Suppose $A \in \mathbb{R}^{n \times n}$. If a matrix $B \in \mathbb{R}^{n \times n}$ satisfies $AB = BA = I_n$,

then we say B is an inverse of A; denoted as $B = A^{-1}$.

Definition (Invertible) Suppose $A \in \mathbb{R}^{n \times n}$. If there exists B such that $B = A^{-1}$, then we say A is invertible.

Questions: Does the inverse always exist?

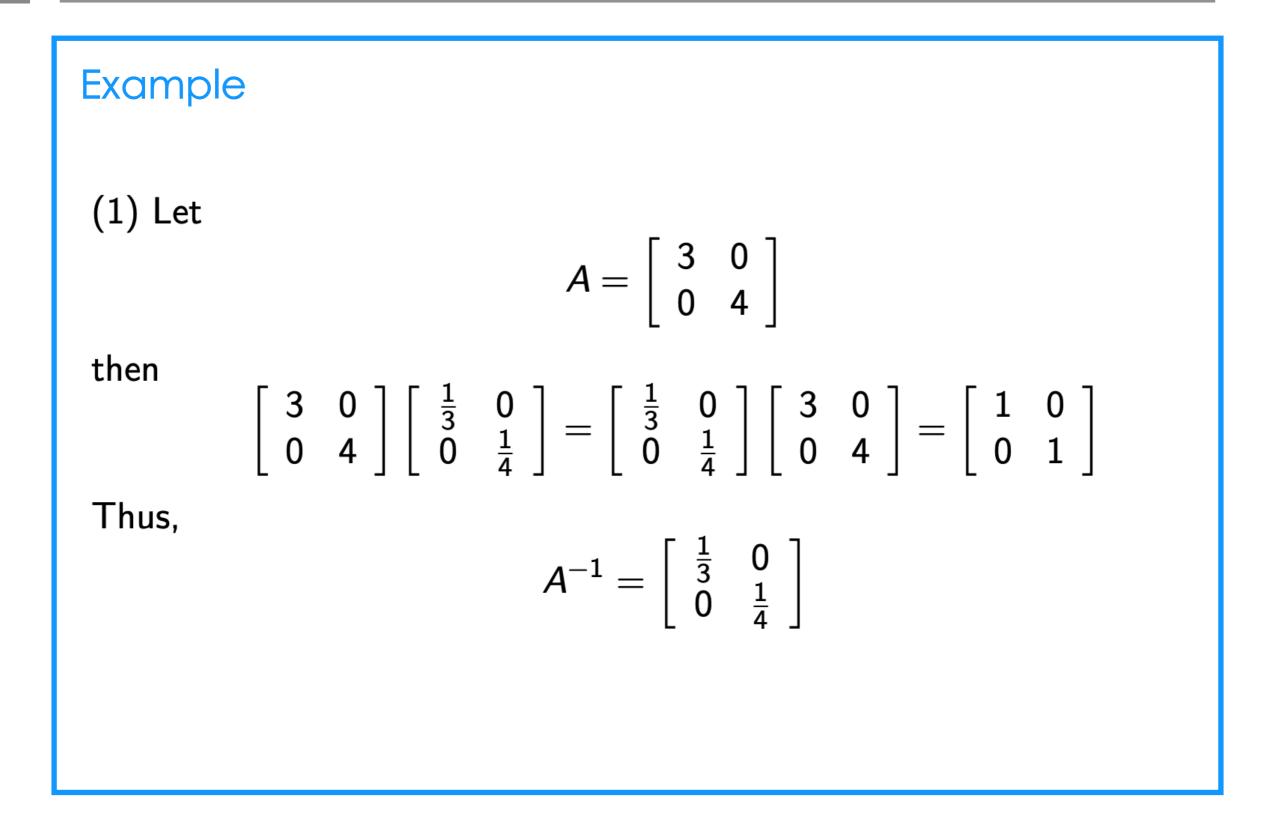
Question: Does the inverse always exist?

No! Consider n=1; you can find a counter-example.

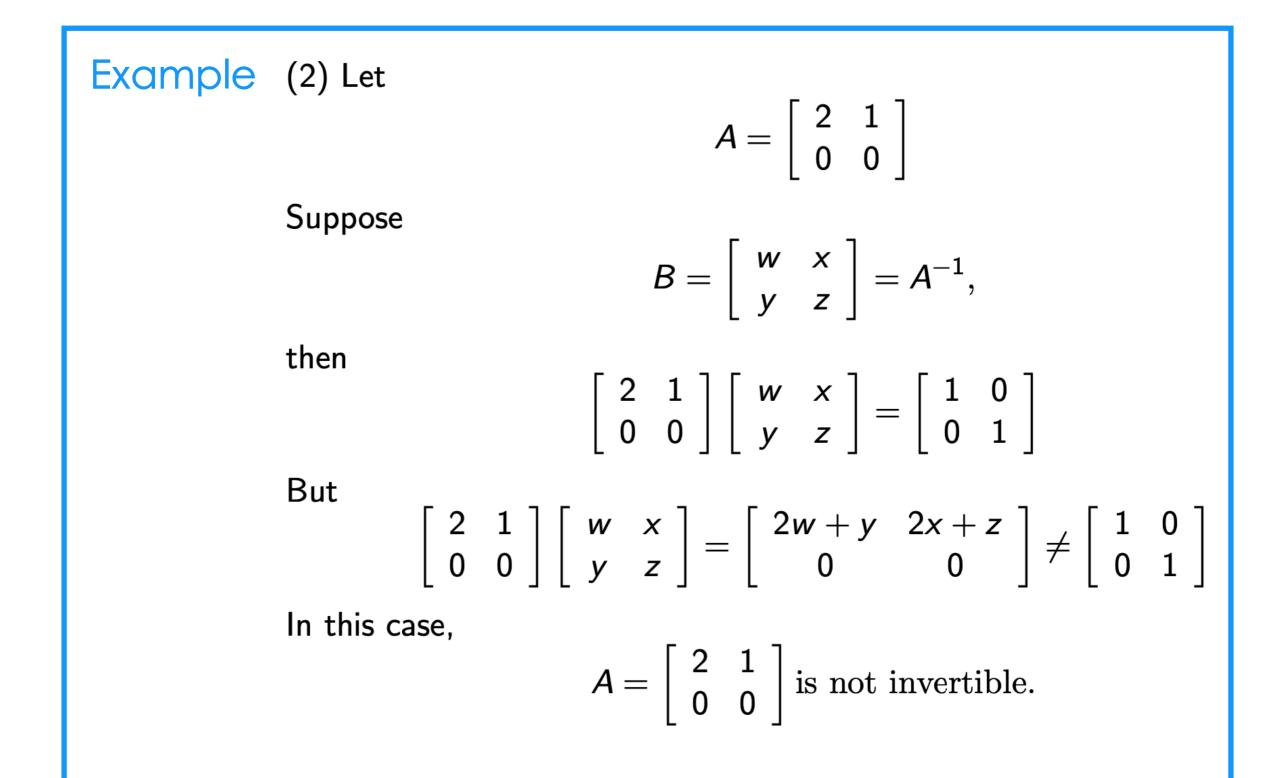
Definition (Singular, nonsingular)

Suppose $A \in \mathbb{R}^{n \times n}$. If A is invertible, then we say A is nonsingular. If A is not invertible, then we say A is singular.

Example of Matrix Inverse



Example of Matrix Inverse



Theorem (Matrix inverse is unique) Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Theorem (Matrix inverse is unique) Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Proof. Let B, C be the inverse of A, thus, AB = BA = I, AC = CA = I. Then B = BI = BAC = IC = C

Wording:

Previously: If $AB = BA = I_n$, then we say B is an inverse of A. Now: If $AB = BA = I_n$, then we say B is the inverse of A.

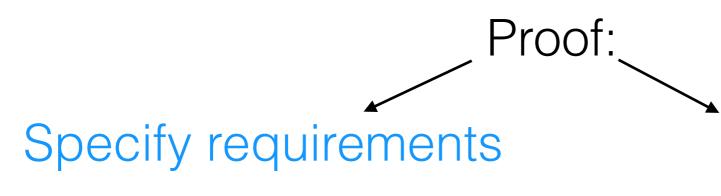
Because of the uniqueness of inverse!

Invertible Matrix for Solutions of Linear Systems

Consider a linear system $A\mathbf{x} = \mathbf{b}$

What is x if A is invertible?

Theorem If A is invertible, then the linear system has a unique solution $x = A^{-1}b$.



Proof requires two things:

First, prove $A^{-1}b$ is a solution.

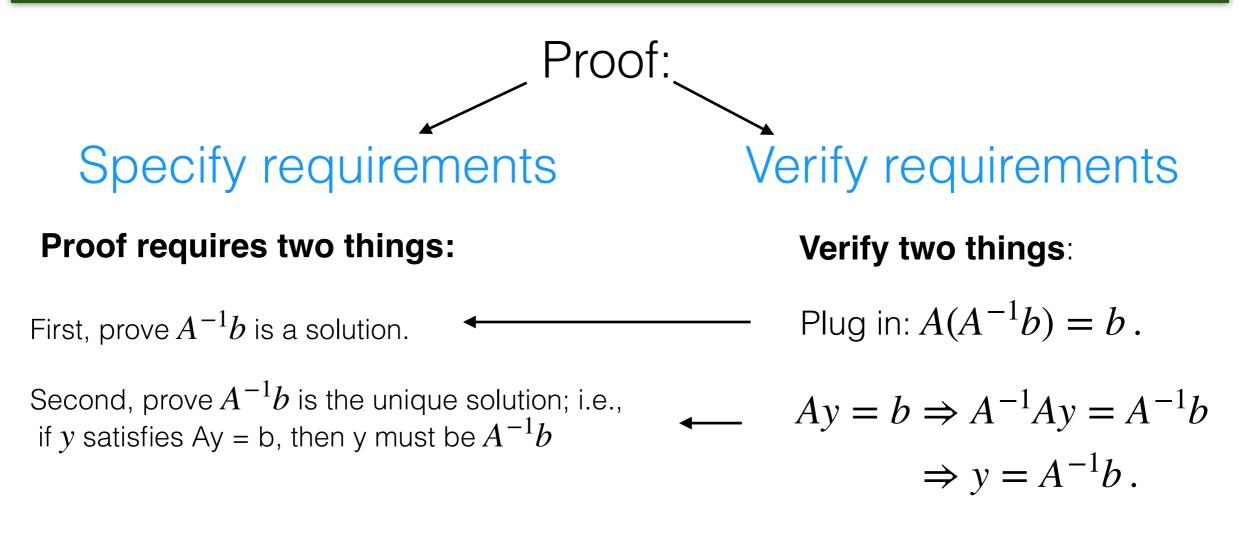
Second, prove $A^{-1}b$ is the unique solution; i.e., if *y* satisfies Ay = b, then y must be $A^{-1}b$

Invertible Matrix for Solutions of Linear Systems

Consider a linear system $A\mathbf{x} = \mathbf{b}$

What is x if A is invertible?

Theorem If A is invertible, then the linear system has a unique solution $x = A^{-1}b$.



Part III Properties of Inverse

Strang's book Sec 2.5

Triangular matrices, products

[15 mins]

Property 9.1 (Inverse of Diagonal Matrix)

1) A diagonal matrix is invertible iff

2) The inverse of the diagonal matrix (if exists) is

Property 9.2	(Inverse of Triangular Matrix)
--------------	--------------------------------

1) A triangular matrix is invertible iff

2) The inverse of an upper triangular matrix

(if exists) is _____ matrix.

3) The inverse of a lower triangular matrix

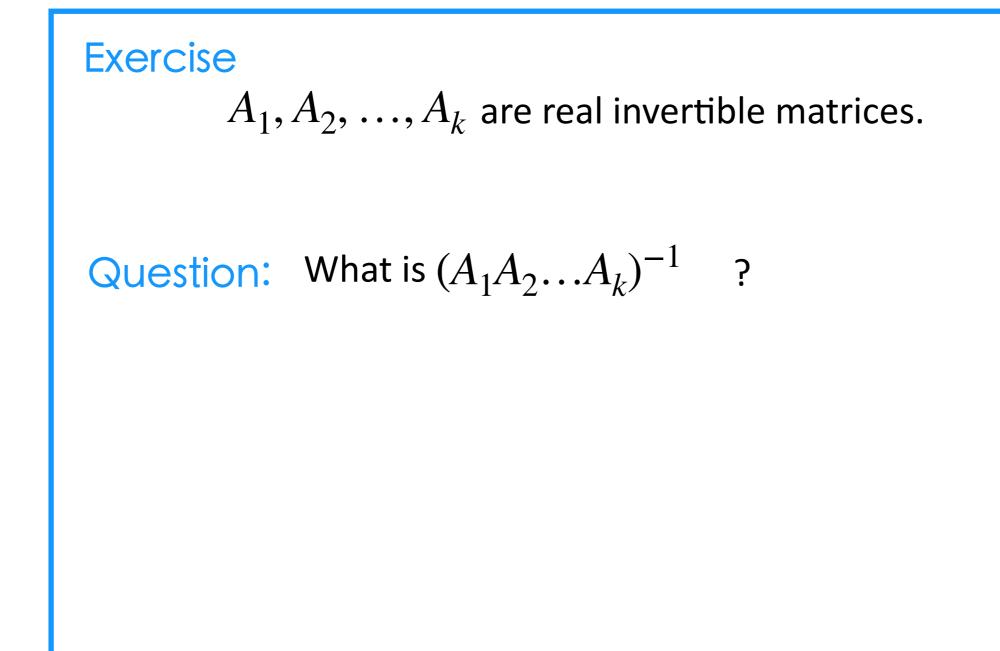
(if exists) is _____ matrix.

Will be useful later this lecture!

Theorem (Matrix Inverse of Matrices Product) Suppose A and B are invertible matrices of size n, then AB is invertible and

 $(AB)^{-1} = B^{-1}A^{-1}.$

Inverse Exercise



Will be useful later this lecture!

Part IV GE Sequence and LU Decomposition: Overview

Strang's book Sec 2.6

2 by 2 Example

Augmented matrix:

Gaussian elimination:

$$\begin{bmatrix} 1 & 1 & 12 \\ 2 & 4 & 38 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 12 \\ 0 & & & \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & & & \end{bmatrix}$$

2 by 2 Example

Augmented matrix:

Gaussian elimination:

$$\begin{bmatrix} 1 & 1 & 12 \\ 2 & 4 & 38 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 12 \\ 0 & & & \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & & & \end{bmatrix}$$

Just look at the coefficient matrix.

$$\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

2 by 2 Example

Augmented matrix:

Gaussian elimination:

$$\begin{bmatrix} 1 & 1 & 12 \\ 2 & 4 & 38 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 12 \\ 0 & & \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & & \end{bmatrix}$$

Just look at the coefficient matrix.

$$\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Express as matrix multiplication (just 1st step):

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \qquad E_{-3R_1+R_2}A = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \triangleq U.$$

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \qquad \text{GE step} \Leftrightarrow \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = U.$$

Denote $E_{21} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$, then $E_{21}A = U.$

From $E_{21}A = U$, can we get an expression of A?

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = U.$$

Denote
$$E_{21} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$
, then $E_{21}A = U$.

From $E_{21}A = U$, can we get an expression of A? Define $L = ___$, then A = LU.

Here, L is ______matrix, and U is ______matrix.

3 by 3 Example

Coefficient matrix

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix}$$

Λ

Gaussian elimination:

$$\begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix} \xrightarrow{R_2 \to -\frac{1}{2}R_1 + R_2} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & -9 & 5 \end{bmatrix} \xrightarrow{R_3 \to -(-3)R_2 + R_3} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix}$$

Express as matrix multiplication:

3 by 3 Example

Coefficient matrix

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix}$$

Λ

Gaussian elimination:

$$\begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix} \xrightarrow{R_2 \to -\frac{1}{2}R_1 + R_2} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & -9 & 5 \end{bmatrix} \xrightarrow{R_3 \to -(-3)R_2 + R_3} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix}$$

Express as matrix multiplication:

3 by 3 Example: Expression of A

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix} \qquad E_3(E_2E_1A) = U.$$

Denote $M = E_3 E_2 E_1$, then MA = U.

From MA = U, can we get an expression of A? Define $L = ___$, then

A = LU.

Here, L is ______matrix, and U is ______matrix.

Denote
$$M = E_3 E_2 E_1$$
, $L = M^{-1} = E_1^{-1} E_2^{-1} E_3^{-1}$.

Claim 1: L is a lower triangular matrix.

Denote
$$M = E_3 E_2 E_1$$
, $L = M^{-1} = E_1^{-1} E_2^{-1} E_3^{-1}$.

Claim 1: L is a lower triangular matrix.

Fact 1: E_3, E_2, E_1 are lower triangular matrices (Type-III elementary)

Fact 2: $E_3^{-1}, E_2^{-1}, E_1^{-1}$ are lower triangular matrices.

Mentioned in Slide "Shapes of Elementary Matrices?" In Part I.

Denote
$$M = E_3 E_2 E_1$$
, $L = M^{-1} = E_1^{-1} E_2^{-1} E_3^{-1}$.

Claim 1: L is a lower triangular matrix.

Fact 1: E_3, E_2, E_1 are lower triangular matrices (Type-I elementary)

Fact 2: E_3^{-1} , E_2^{-1} , E_1^{-1} are lower triangular matrices. Property of inverse of triangular matrices.

Fact 3: Product of lower triangular matrices is lower triangular.

Homework 2 (though proved for upper triangular matrices).

n by n Good Case: LU Decomposition

Coefficient matrix A; square matrix.

Gaussian elimination (GE) (forward part; assume no row exchange)

$$A \to A_1 \to A_2 \dots \to U$$

U is upper triangular.

Express GE as matrix multiplication:

Express matrix A as matrix product:

$$A = (E_k E_{k-1} \dots E_1)^{-1} U.$$

Denote $L = (E_k E_{k-1} ... E_1)^{-1}$; it is lower triangular.

since only involves Type-I (eliminating down) and Type-II elementary matrices **Then**

$$A = LU.$$

What are we doing here?

First, GE is just a bunch of matrix multiplications

$$A \to A_1 \to A_2 \dots \to U$$

Second, multiply.

you can multiply matrices together (Grouping them)

Third, shape.

it is a lower triangular matrix! (Wow!)

Claim: Suppose A is a square matrix.

If there is no row exchange in the process of GE, then the matrix A can be decomposed as

$$A = LU,$$

where

-L is lower triangular;

—U is upper triangular.

Question: What if there are row exchanges?

Solve Linear Systems Million Times

—What if you need to solve $Ax = b_k$ for $k = 1, 2, 3, ..., 10^{10}$?

Method 1:

Directly use GE to solve $Ax = b_k$.

Drawback: apply E_k, E_{k-1}, \dots, E_1 for each system. Computers memorize or apply all operations.

Method 2 (saving LU)
Compute L and U once.
Store. Store L and U.
Solve. Solve Ax = b by solving L y = b and U x= y

Premise: Solving Triangular System is Easy

Solving upper triangular system is easy:

Solving lower triangular system is also easy:

Concluding Section

Summary Today Write Your Own Summary

One sentence summary:

We learned

Detailed summary:

Summary Today Instructor's summary

One sentence summary:

We learned

Detailed summary: