#### Lecture 9

## Solving Square Linear System IV: Breakdown Cases and Solution Set

Instructor: Ruoyu Sun



#### **Next Two Lectures: Key Questions**

Consider a square linear system  $A\mathbf{x} = \mathbf{b}$ 

**Theorem** If A is invertible, then the linear system has a unique solution  $x = A^{-1}b$ .

Question 1: When is A invertible?

Question 2: How to Express/Compute  $A^{-1}$ ? (if exists)

Will answer them in the coming lectures.

Di If A 13 Not Montrolle, What hoppens & (Mear System? 5-7 lectures

#### **Today's Lecture: Outline**

Today ... Existence and expression/computation of inverse.

- 1. Breakdown Cases of Solving Square Linear System
- 2. Number of Solutions for Different Cases

Strang's book: Sec 2.2,

After this lecture, you should be able to

- 1. Tell a few breakdown cases for solving square linear system
- 2. Calculate number of solutions based on final form after elimination

## Part O Preview

#### Square System: What's New Compared to Primary School?

#### **Primary school:**

$$\begin{cases} x_1 + 2x_2 = 3, \\ 2x_1 - 3x_4 = 4. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 = 1, \\ 7x_1 - 5x_4 = 4. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 = 3, \\ 2x_1 - 3x_4 = 4. \end{cases} \begin{cases} 3x_1 + 2x_2 = 1, \\ 7x_1 - 5x_4 = 4. \end{cases} \begin{cases} x_1 - 2x_2 = 3, \\ 4x_1 + 7x_4 = -9 \end{cases}$$

Solve a 2\*2 linear system? So easy!

Really?



#### Square System: What's New Compared to Primary School?

#### **Primary school:**

$$\begin{cases} x_1 + 2x_2 = 3, \\ 2x_1 - 3x_4 = 4. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 = 1 \\ 7x_1 - 5x_4 = 4 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 = 3, \\ 2x_1 - 3x_4 = 4. \end{cases} \begin{cases} 3x_1 + 2x_2 = 1, \\ 7x_1 - 5x_4 = 4. \end{cases} \begin{cases} x_1 - 2x_2 = 3, \\ 4x_1 + 7x_4 = -9 \end{cases}$$

Solve a 2\*2 linear system? So easy!



#### **University**:

$$\begin{cases} -x_1 + x_2 = 3, \\ 2x_1 - 2x_2 = 4. \end{cases}$$

$$\begin{bmatrix} -1 & 1 & 3 \\ 2 & -2 & 4 \end{bmatrix}$$

$$-\chi_1 + \chi_2 = 3$$

$$\begin{bmatrix} -1 & 1 & 3 \\ 2 & -2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 3 \\ 0 & 0 & 6 \end{bmatrix}$$



emineral by reasonly



Conclusion The solution is MT existent.

#### Unknown Unknowns

There are known knowns: there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns - there are things we do not know we don't know.

-Donald Rumsfeld



| S      | Known Knowns                               | Known Unknowns                                 |
|--------|--------------------------------------------|------------------------------------------------|
| Known  | Things we are aware of and understand.     | Things we are aware of but don't understand.   |
| lus.   | <b>Unknown Knowns</b>                      | Unknown Unknowns                               |
| Unknow | Things we understand but are not aware of. | Things we are neither aware of noi understand. |

Knowns

Unknowns

#### **Unknown unknowns**

(for (most of the) 5th grade students):

Do I know how to solve all 2\*2 linear systems?

They thought yes (they know). But actually no (they don't know).

Many 5th grade students don't even know what 'solve" really means:

It means "find all soluth."!

The set of soluthers

## Part I "Breakdown" of Solving Square Systems

Sec 2.2, part "Breakdown of elimination"

### Review: Gaussian Elimination for Good') Systems

#### **Pipeline**

eliminate entries below Q11, Ozz, --

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$   
 $\dots$   
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ 









What if there are zero diagonal entries?

#### Summary of GE for Solving Square Systems

#### Step 1: Forward Elimination.

Perform elementary row operations and try to get an upper triangular matrix.

#### Step 2: Backward substitution

Perform elementary row operations and try to get a diagonal matrix.

Assumption 1 We can get a honzero-diagonal triangular matrix after Step 1.

Claim 1 Under Assumption 1, we can get a diagonal matrix at the end of Step 2.

Corollary 1 Under Assumption 1, the system has a unique solution.

This assumption may not hold for some problems; will discuss later.

## Pivot 12 12.

#### Example

$$\begin{cases} x_1 + x_2 = 2, \\ 2x_1 - 2x_2 = 4. \end{cases}$$
 Substract 2\* Eq.1 from Eq. 2

Matrix form:

**Pivot** 

first nonzero in the row that loes the elimination

The pivots are on the diagonal of the triangle after elimination.

## Pivot: Examples (2)

$$A \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 2 & 3 & 16 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 3 & 16 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 3 & 16 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 3 & 16 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 1$$

#### Question: What if there are zeros?

#### Example 1 [ Permanent failure with no solution.]

$$\begin{cases} x_1 + x_2 = 2, \\ 2x_1 + 2x_2 = 5. \end{cases}$$
 Substract 2\* Eq.1 from Eq. 2

#### Matrix form:

The system has no second pivot



#### Question: What if there are zeros?

Example 2

$$\begin{cases} x_1 + x_2 = 2, & \text{Substract 2* Eq.1 from Eq. 2} \\ 2x_1 + 2x_2 = 4. & \text{2-(+2)} = 4 \end{cases}$$

Matrix form:

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

Any (x, xz) satisfying X,+X,=Z is a solution

$$\chi, +\chi_z = 2$$
 1) a solution

(1.5,05)

English Lesson: Infinitely Many It has infinity solution Yi, X. hes Myssity soluths. Correct: The system has "infinitely many" solutions. Informal: so solutions or on-many solutions.

#### Question: What if there are zeros?

Example 3

Temporary failure (zero). \_\_\_\_\_\_ produces \_\_\_\_\_ pivots ]

$$\begin{cases} x_2 = 2, \\ 2x_1 + 2x_2 = 4. \end{cases}$$
 Exchange two equations

Matrix form:

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \xrightarrow{R_1 \leftarrow R_2} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$



#### Visualization of Various Cases: 2 by 2 System

- Examples of solving  $2 \times 2$  and  $3 \times 3$  systems of linear equations Elimination!
- Visualization of a  $2 \times 2$  system of linear equations

(i) 
$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 2$ 

(ii) 
$$x_1 + x_2 = 2$$
  
 $x_1 + x_2 = 1$ 

(i) 
$$x_1 + x_2 = 2$$
 (ii)  $x_1 + x_2 = 2$  (iii)  $x_1 + x_2 = 2$   $x_1 - x_2 = 2$   $x_1 + x_2 = 1$   $-x_1 - x_2 = -2 \leftarrow x_1 + x_2 = 2$ 







#### Visualization of Various Cases: 2 by 2 System

- Examples of solving  $2 \times 2$  and  $3 \times 3$  systems of linear equations Elimination!
- Visualization of a  $2 \times 2$  system of linear equations

(i) 
$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 2$ 

$$(11)$$
  $x_1 + x_2 = 2$   
 $x_1 + x_2 = 1$ 

(i) 
$$x_1 + x_2 = 2$$
 (ii)  $x_1 + x_2 = 2$  (iii)  $x_1 + x_2 = 2$   
 $x_1 - x_2 = 2$   $x_1 + x_2 = 1$   $-x_1 - x_2 = -2$ 







#### Visualization of Various Cases: 2 by 2 System

- Examples of solving  $2 \times 2$  and  $3 \times 3$  systems of linear equations Elimination!
- Visualization of a  $2 \times 2$  system of linear equations

(i) 
$$x_1 + x_2 = 2$$
  
 $x_1 - x_2 = 2$ 

$$(n)$$
  $x_1 + x_2 = 2$   $x_1 + x_2 = 1$ 

(i) 
$$x_1 + x_2 = 2$$
 (ii)  $x_1 + x_2 = 2$  (iii)  $x_1 + x_2 = 2$   
 $x_1 - x_2 = 2$   $x_1 + x_2 = 1$   $-x_1 - x_2 = -2$ 







unique solution  $x_1 = 2, x_2 = 0$ 

no solution

infinitely many solutions

A linear system can have exactly 3 solution.

False.

must be  $0, 1, \infty$ .

#### **Solution Set**

#### Definition (Solution and Solution Set)

A **solution** of an  $m \times n$  linear system with variables  $(x_1, ..., x_n)$  is a

vector  $(s_1, ..., s_n)$  such that if we let  $x_i = s_i$  for all i = 1,...,n the m equations hold simultaneously.

The **solution set** of an  $m \times n$  linear system is a set that contains all solution(s).

Example (Solution Set)

$$2x_1 + 3x_2 = 3,$$
  
 $x_1 - x_2 = 4$ 

#### Example (Solution Set)

$$2x_1 + 3x_2 = 3,$$

$$x_1 - x_2 = 4$$
The solution set is  $\{(3, -1)\}$ 

#### Example (Solution Set)

$$2x_1 + 3x_2 = 3,$$
  
 $x_1 - x_2 = 4$ 

The solution set is  $\{(3, -1)\}$ 

$$2x_1 + 3x_2 = 3,$$
  
 $4x_1 + 6x_2 = 6$ 

#### Example (Solution Set)

$$2x_1 + 3x_2 = 3,$$
  
 $x_1 - x_2 = 4$ 

The solution set is  $\{(3, -1)\}$ 

$$2x_1 + 3x_2 = 3$$
,  
 $4x_1 + 6x_2 = 6$ 

The solution set is 
$$\left\{ \left( t, \frac{3-2t}{3} \right) \mid t \in \mathbb{R} \right\}$$
 (Infinitely many)

Will learn how to derive this set in late

Will learn how to derive this set in later lectures

# Part II Number of Solutions of Square System

Sec 2.2, part "Breakdown of elimination"

#### **Have We Enumerated All Cases?**

Q: We have seen a few breakdown cases.

Do we know how to handle ALL cases?

This section.

Try to enumerate all com

| Check | Tour | Knowledge | Boundary: | What's | Unknown? |
|-------|------|-----------|-----------|--------|----------|
|       |      |           |           |        |          |

We have talked about 2×2 system Discussed Breakdonn Cases [00/4]

What about higger linear systems?
eg. LOX(0 system .

Ane you sure you can solve it?

Are you sure you can not salve it?

#### **Two Cases for Square Systems**

all possible cores of 4

Coefficient matrix A; square matrix.

Gaussian elimination (GE) (both forward and backward)

$$A \to A_1 \to A_2 \ldots \to U o \ldots B_1 \to \ldots \to D$$
 D is diagonal?

Note: we don't always get a diagonal matrix.

End of forward elimination: Upper triangular

End of backward step

**Case 1:** Diagonal entries of U are nonzero.

$$\begin{bmatrix}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
\_\_\_\_ pivots

Diagonal matrix

**Case 2:** Some diagonal entries of U are zero.

$$\begin{bmatrix}
1 \times \times \times \times \times \\
0 & 1 \times \times \\
0 & 0 \times \\
0 & 0 & 0
\end{bmatrix}$$
Smothre:

pivots

#### **Two Cases During GE?**



Remark: Rigorously speaking, there are other cases, which we discuss next.

Q: Con you always get T 1 0 or [JF] An there Other cases?

Answer: No other case, if allow column exchange.

**New Case** 

## Think: Can you make them

[1 ]

During Forward elimination:



$$\begin{bmatrix}
1 & * & * & * & * & * & * \\
0 & 1 & * & * & * & * \\
\vdots & \vdots & \ddots & \ddots & * & * & * \\
0 & 0 & \dots & 1 & * & * & * \\
0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$



Another Example.

$$\begin{array}{c} 047 \\ 000 \\ 058 \end{array}$$

## Effect of Swapping Columns: Concrete example

$$(x_1, x_2) = (s, 2)$$

### Swapping Columns: Symbolic Proof of 2x2 Cose

Can we exchange columns? Yes if you do extra step.

Consider 
$$A = [\vec{a}_1, \vec{a}_2]$$

$$Ax = 0 \Leftrightarrow \chi_{1} \lambda_{1} + \chi_{2} \lambda_{2} = 0$$

Swapping columns, get matrix

$$\hat{A} = [\vec{A}_{2}, \vec{A}_{1}]$$

key property: Commtatus rule of adula

Claim: Define  $\frac{\sqrt{2} = (X_2)X_1}{\sqrt{2}}$  then

$$\forall x = 0 \Leftrightarrow \forall \hat{x} = P$$

**Corollary**: If x = (1,2) is a solution of Ax = 0, then

$$\hat{\chi}=(2,1)$$
 is a goluth  $\hat{b}$   $\hat{A}\hat{x}=\hat{b}$ .

Peason. 
$$\vec{Q}_1 \times_1 + \vec{Q}_2 \times_2 = \vec{Q}_1 \times_2 + \vec{Q}_1 \times_1$$
  
1, e.  $A \times = \hat{A} \times^{\wedge}$ 

 $A \xrightarrow{Cl \leftarrow C2} \hat{A}, \hat{A}y = b$ tg 1  $x = (P_2, P_1)$ Shop  $P_1, P_2$   $y = (P_1, P_2)$ Is the angled solute A C3 H C5, A, Ay=b tg 2 X=(P1, P2, P5, P4, P3) (Swep P3&P5) Clam Exchage column is OK, if you recover the original soluth by suappy entries.

### **Swapping Columns: Result**

**Proposition**: (swapping columns keep solution set structure)

Consider a linear system Ax = b.

Suppose  $\hat{A}$  is obtained by exchanging columns of A multiple times.

Suppose the solution set of Ax = b is X,

the solution set of  $\hat{A}y = b$  is Y,

Then there exists a one-to-one mapping from X to Y.

mapping = function.  $f: X\to Y$  means: for any  $x\in X$ , there's a  $f(x)\in Y$ . (-1 mapping means: for any  $y\in Y$ ,  $\exists$  unique  $x\in X$ , so  $f(x)\neq y$ 

Corollary If Ax = b has exactly p solution(s), where  $p \in \{0,1,\infty\}$ , Then Ax = b also has exactly p solutions.





Clam If you all column exchange in GE, then for square matrix, you can obtain either C or Ik F

D

(h-k) nows (n-k) Columns

### Proof Idea (Short Version)

### Proof Idea (Longer version)

explain below

Informal. In the left-top corner.

top-left nonzero in B

## 10 Other case missing!

Namely: There is MO other case of the final firm of GE with Colum excharge for square (Mear system.

Next: From the final form,

IIF

Now to purite solution set.

### find form

### Only Two Cases!!!!! (If Allow Column Exchange)

End of forward elimination: End of backward step: Upper triangular

Case 1: 
$$\begin{bmatrix} 1 & * & * & * & * & * \\ 0 & 1 & * & * & * & * \\ \vdots & \vdots & \ddots & \ddots & * \\ 0 & 0 & \dots & 1 & * \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} } \text{ correspond } \begin{cases} x_1 = \bigstar \,, \\ x_2 = \bigstar \,, \\ \vdots \\ x_n = \bigstar \,, \\ \vdots \\ x_n = \bigstar \,, \end{cases}$$

$$\begin{bmatrix} \text{Case 2:} \\ < \text{n pivots.} \\ (\text{Allow column Exchange}) \end{cases} \begin{bmatrix} 1 & * & * & * & * & * \\ 0 & 1 & * & * & * & * \\ \vdots & \vdots & \ddots & \ddots & * & * & * \\ \vdots & \vdots & \ddots & \ddots & * & * & * \\ 0 & 0 & \dots & 1 & * & * & * \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0$$

Remark 1: GE in the textbook does NOT perform column exchange.

**Remark 2**: If allowing swapping columns, then in the end, need to  $\underbrace{\text{Supp. Entries}}_{\text{of obtained solution}}$  of obtained solution  $(\hat{x}_1, ..., \hat{x}_n)$  to obtain original solution.

For now, our goal is to study # of solutions, so we do not discuss details.

#### **How to Continue to Write Solutions?**

For Case 2, GE ends at the above two forms.

How to write solutions.

**Case 2: < n pivots. (Allow column exchange)** 

$$\begin{bmatrix} 1 & 0 & \dots & 0 & * & \dots & * \\ 0 & 1 & \dots & 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \ddots & * & \dots & * \\ 0 & 0 & \dots & 1 & * & \dots & * \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \\ c_{k+1} \\ \vdots \\ c_n \end{bmatrix} \text{ correspond } \begin{cases} \hat{x}_1 = ?, \\ \vdots \\ \hat{x}_k = ?, \\ 0 = c_{k+1}, \\ \vdots \\ 0 = c_n. \end{cases}$$
 Case 2a: If some  $c_i \neq 0$ , then  $c_i \neq 0$ , then  $c_i \neq 0$ , then  $c_i \neq 0$ . Then  $c_i \neq 0$  and  $c_i \neq 0$ .

### Case 2b: Simple Example of 3 by 3

Case 2b: All  $c_i = 0...$ 

Simple case:

$$\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}$$

$$\begin{bmatrix}
1 & 0 & \alpha_{1} & C_{1} \\
0 & 1 & \alpha_{2} & C_{2} \\
0 & 0 & 0
\end{bmatrix}$$

$$\hat{X}_{1} + \alpha_{1} \hat{X}_{3} = C_{1}$$

$$\hat{X}_{2} + \alpha_{2} \hat{X}_{3} = C_{2}$$

$$0 = 0$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{2} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{2} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{4} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{5} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{2} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{4} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{5} = C_{4} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{7} = C_{7} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{8} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{9} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{2} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{4} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{5} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{7} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{7} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{8} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{9} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{1} = C_{1} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{2} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{3} = C_{4} - \alpha_{1} \hat{X}_{3}$$

$$\hat{X}_{4} = C_{4} - \alpha_{1} \hat{X}_{4}$$

$$\hat{X}_{5} = C_{4} - \alpha_{1} \hat{X}_{5}$$

$$\hat{X}_{7} = C_{4} - \alpha_{1} \hat{X}_{7}$$

$$\hat{X}_{7} = C_{4} - \alpha_{1} \hat{X}_{7}$$

$$\hat{X}_{7} = C_{4} - \alpha_{2} \hat{X}_{7}$$

$$\hat{X}_{7} = C_{4} - \alpha$$

$$\chi_1$$
 =  $\zeta_1$  =  $\zeta_1$  =  $\zeta_2$  =  $\zeta_3$  =  $\zeta_3$  =  $\zeta_3$  free

$$= C_1 + \exists X_4$$

$$= C_2 + \exists X_4$$

$$= C_3 + \exists X_4$$

X4ER; 00-May Xx => 00-May soluth.

### Remark

If original linear system is  $\begin{cases} \chi_1 = 2 + \chi_4 \\ \chi_2 = 2 - \chi_4 \end{cases}$  $\chi_{4} = 2 - 2 \chi_{4}$ Then it has so-many solutions.

### **Case 2b: General Case Analysis**

Case 2b: All  $c_i = 0...$ 

Claim: Suppose  $c_{k+1}=\ldots=c_n=0..$  If  $u_{ii}=0$  for some i, then Ax =0 has \_\_\_\_\_ solution.

### From Matrix to Linear System

### From Linear System to Solution

$$\hat{X}_{i} + \boxed{\hat{X}_{k+1}} + \cdots + \boxed{\hat{X}_{i}} = C_{i}$$

$$\hat{X}_{k} + \boxed{\hat{X}_{k+1}} + \cdots + \boxed{\hat{X}_{k}} = C_{i}$$

$$\hat{X}_{i} = C_{i} - \boxed{\hat{X}_{k+1}} - \cdots - \boxed{\hat{X}_{k}}$$

$$\hat{X}_{i} = C_{i} - \boxed{\hat{X}_{k+1}} - \cdots - \boxed{\hat{X}_{k}}$$

$$\hat{X}_{k+1} - \cdots + \boxed{\hat{X}_{k}} = C_{i}$$

### Summary of Success/Failure for Square Systems

Case 1) n pivots.

Unique solution.

We may have to exchange the equations (rows).

Case 2: For n by n systems, we do not get n pivots.

Allow Collexchire [ ] = [ Elimination leads to equations (besides  $x_i = *$ ) 0 = [ (nonzero number) [ NO solution(s)]

all 0 = [ = may solution(s)]

# What you (should) Know by now

1) (the to calculate # of solutions for AM square system,

2) How to write solution set of AMY square system, (Suppose you know: for each "column exchange of matrix", you need to perform "entry exchange of final solution")

[ For "wniting solution set", will have more lectures)

#### Gaussian Elimination for "Good" Systems

Problem: Solve  $n \times n$  linear system of equations.

Preparation: Write the linear system as augmented matrix form.

#### Step 1:

Perform elementary row operations to get an upper triangular matrix.

#### Step 2:

Step 2.1 Perform elementary row operations to get a diagonal matrix.

Step 2.2 If all diagonal entries are nonzero, (i.e. n pivots)

then perform "row multiplication" to get an identity matrix.

Finishing step: Write down the solution

(unique solution for this case).

#### **Exercise**

### **Summary Today (write Your Own)**

One sentence summary:

**Detailed summary:** 

### **Summary Today (of Instructor)**

#### One sentence summary:

We study

#### **Detailed summary:**