MAT2041 Tutorial

Week 10

The Chinese University of Hong Kong, Shenzhen

Nov. 21^{st} , 2023 \sim Nov. 24th, 2023

[Linear Transformation](#page-4-0)

Review Linear Function

Definition Suppose a_1, a_2, \ldots, a_n are given real numbers, $x = (x_1, x_2, \ldots, x_n)$, then

 $f(x) = a_1x_1 + a_2x_2 + \ldots + a_nx_n$

is called a linear function from \mathbb{R}^n to \mathbb{R} . Alternative Suppose $a \in \mathbb{R}^n$ is a given real vector, $x \in \mathbb{R}^n$, then

 $f(x) = \langle x, a \rangle$

is called a linear function from \mathbb{R}^n to \mathbb{R} .

Suppose
$$
V = \text{span}\left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}
$$
 is a subspace of \mathbb{R}^3 .

(1) Find a non-zero linear function $\varphi : \mathbb{R}^3 \to \mathbb{R}$ that: $\forall x \in V, \varphi(x) = 0$

(2) Prove that Ann(V) = $\{\varphi \mid \forall v \in V, \varphi(v) = 0\}$ is a linear space.

Review Linear Transformation

> Definition Suppose a_{ij} ($i = 1, 2, ..., m; j = 1, 2, ..., n$) are given real numbers, $x = (x_1, x_2, \ldots, x_n)$, then $f(x) =$ $\sqrt{ }$ $\overline{}$ $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n$. . . $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n$ \setminus $\Bigg\}$

is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Alternative 1 Suppose $A \in \mathbb{R}^{m \times n}$ is a given real matrix, $x \in \mathbf{R}^n$, then $f(x) = Ax$

is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Alternative 2 If a mapping f from \mathbb{R}^n to \mathbb{R}^m satisfies

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \forall \alpha, \beta \in \mathbb{R}, \forall x, y \in \mathbb{R}^n$

Then f is a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

- Consider linear transformation $L: V \to W$, where V, W are linear spaces. Define Null(L) $\triangleq \{y \in V : L(y) = 0\}.$
- Prove that $Null(L) = \{0\}$ if and only if the following holds: $\forall v_1, v_2 \in V$, $v_1 \neq v_2$ can imply that $L(v_1) \neq L(v_2)$.

Till now, we are talking about linear transformations over vectors. In fact, the same definition can be applied to matrices, polynomials, etc.

- (1) Let T_1 : \mathbb{P}_2 → \mathbb{P}_2 be the transformation $T_1(p) = p'(x) p(x)$, where \mathbb{P}_2 is a subspace for polynomials of the order not greater than 2. Prove that T_1 is a linear transformation.
- (2) Let $T_2: \mathbb{P}_2 \to \mathbb{R}$ be the transformation $T_2(p) = p'(5) p(3)$. Prove that T_2 is a linear transformation.

.

Find a linear transformation $\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$, find a matrix A such that $T(v) = Av$ for all $v \in \mathbb{R}^2$.

$$
T\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} -x \\ y \end{array}\right]
$$

Solution Exercise 4

Consider one way to solve Exercise 4(
$$
T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}
$$
 ($x, y \in \mathbb{R}$)):
\n $T\begin{pmatrix} x \\ y \end{pmatrix}$ contains two independent parts: x and y. And

$$
T\begin{pmatrix} x \\ y \end{pmatrix} = x \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} + y \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Longrightarrow A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}
$$

Why? Each column of A is just representing the "effect" of one variable. To be specific, it is the effect of each element in the basis of the original space.

Step Further Matrix representation

Actually, we can write any $T\left(\frac{x}{y}\right)$ y $\big)$ by the linear combination of:

$$
\mathcal{T}\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}-1\\0\end{pmatrix}\qquad;\qquad\mathcal{T}\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0\\-1\end{pmatrix}
$$

 $T(\alpha_1 c_1 + \ldots + \alpha_n c_n) = \alpha_1 T(c_1) + \ldots + \alpha_n T(c_n) = [T(c_1), \cdots T(c_n)] \cdot \alpha$

ONLY the basis matters!

Naive Strategy:

- \bullet Find a basis β of the original linear space.
- **2** ∀*i*, find the vector $T(\mathcal{B}_i)$ (the "effect")
- **3** Combine them together to form a matrix.

Note that then when calculating the linear transformation of x , x should be represented by the basis (coordinate vector), so that Ax makes sense.

Step Further

Matrix representation

Recall in Exercise 3, linear transformation can be define on spaces other than real vectors, like polynomials.

- Easy We can still find a basis for the original space. And we can find the coordinate vector for any x.
- Hard We cannot find the "effect" using a vector, then we cannot combine them to a matrix.

Solution: Find a basis for the target space as well! Then we can represent the transformed value in its coordinate vector, thus we can form a matrix.

$$
\left\{\begin{aligned} &\mathcal{T}\begin{pmatrix}1\\0\end{pmatrix}=-1e_1+0e_2\\ &\mathcal{T}\begin{pmatrix}0\\1\end{pmatrix}=0e_1+1e_2\end{aligned}\right.\implies A=\begin{pmatrix}-1&0\\0&1\end{pmatrix}
$$

Step Further Matrix representation

Definition For linear transformation $T: V \rightarrow W$, where V has a basis A, W has a basis $\mathcal{B}.$ If matrix $\mathcal{C}=(c_{ij})$ satisfies $\mathcal{T}(\mathcal{A}_j)=\sum^m_{i}c_{ij}\mathcal{B}_i$, then \mathcal{C} is j=1

the matrix representation of T under bases A, B . General Strategy: Find a matrix representation M:

- \bullet Find a basis A for V.
- \bullet Find a basis β for W.
- \bullet $\forall i$, Find $\mathcal{T}(\mathcal{A}_i)$ as a linear combination of elements in \mathcal{B} .
- \bullet Write it as a column vector (the coordinate vector of $T(A_i)$).
- **6** Combine them to a matrix.

Recall HW4, Problem 6. Suppose linear transformation $\mathcal{T}:\mathbb{R}^{2\times 2}\to\mathbb{R}^{2\times 2}$ is defined as $\mathcal{T}(X) = AX - XA, \; X \in \mathbb{R}^{2 \times 2}, A = \begin{bmatrix} 1 & 0 \ 2 & 3 \end{bmatrix}.$

- $\mathbf 1$ Find a basis $\mathcal B$ for $\mathbb R^{2\times 2}.$
- **2** For each $\mathcal{B}_i \in \mathcal{B}$, write $\mathcal{T}(\mathcal{B}_i)$ as a linear combination of elements in B.
- \bullet Find the matrix representation of T under the basis you found.

These slides are based on previous tutorial materials of MAT2041. We thank previous TAs and instructors for sharing previous course materials.