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Review
Block Matrix Inverse and Block LU decomposition

Above all, let’s reemphasize that: In homeworks or exams, if you want to
show matrix B is the inverse of A, you should verify both sides:
BA = AB = I . (unless there are extra instructions)

LU decomposition Assume EkEk−1 · · ·E1A = U, where U is an upper
triangular matrix and ∀i ,Ei is an elementary matrix.
Then A = (EkEk−1 · · ·E1)

−1U = LU.

Inverse of Block Upper Triangular Matrix
Recall that the inverse of an upper triangular matrix U is

U−1 =

[
A B
0 D

]−1

=

[
A−1 −A−1BD−1

0 D−1

]



Review
Block Matrix Inverse and Block LU decomposition

Block Elementary Row operation (Not mentioned in lectures before)
For block matrices, block elementary row operations can be defined. We
have

1 switch two rows. Examples omitted.

2 left-multiply a row by a matrix. E.g.

[
A B
C D

]
→

[
PA PB
C D

]
3 add the product of a matrix and a row to another row.

E.g.

[
A B
C D

]
→

[
A B

PA+ C PB + D

]
Block Elementary Matrix (Not mentioned in lectures before)

Accordingly, block elementary matrices can be defined.

E.g. matrix

[
I1 0
P I2

]
represent the operation of ”add matrix P

left-multiply the first row to the second row”.

We can prove it since

[
I 0
P I

] [
A B
C D

]
=

[
A B

PA+ C PB + D

]
.



Exercise 1

Given 2× 2 invertible block matrix M =

[
A B
C D

]
, where A is also

invertible. Find M−1.

Hint: Think about the content we reviewed just now:

1 Block elementary matrix

2 LU decompostion (Can you extend this to the case of block matrices?)

3 Inverse of block upper triangular matrix



Review
Rectangular Linear System

(Rectangular) Matrix in RREF
1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 · · ·
0 0 · · · 0 1 ∗ · · · ∗ 0 · · ·
0 0 · · · 0 0 0 · · · 0 1 · · ·
...

...
...

...
...

...
...

...
...

...


Column exchanges Exchanging columns of A can lead to the form

[
Ik F
0 0

]



Review
Rectangular Linear System

Solutions Express pivot variables by free variables.
E.g.1 0 1 3

0 1 −1 2
0 0 0 0

 →

{
x1 = 3− x3

x2 = 2 + x3
→ S =


3− t
2 + t
t

 ∣∣∣∣∣t ∈ R


*Trick when an m × n matrix A is expressed as

[
Ik F
0 0

]
, we have

x⃗ =



x1
...
xk
xk+1
...
xn


=



b1
...
bk
0
...
0


+

[
−F
In−k

]
· λ⃗ (λ⃗ ∈ Rn)



Exercise 2

Solve the linear system
x1 − 3x2 + 2x3 + x4 = 6

x3 + 5x4 = 3

x1 − 3x2 + 3x3 + 6x4 = 9



Review
Linear Space

Informal interpretation Linear space is a set that

is equipped with addition and scalar multiplication;
any linear combination of elements is in this set.

Formal definition V is called a linear space over R if the 8 axioms hold:

(A1) u+ v = v + u,∀u, v ∈ V
(A2) u+ (v +w) = (u+ v) +w = u+ v +w, ∀u, v,w ∈ V .
(A3) There exists a element 0 s.t. u+ 0 = u, ∀u ∈ V .
(A4) If u ∈ V , then there exists −u = (−1)u, s.t. u+ (−u) = 0.
(A5) α(u+ v) = αu+ αv, ∀α ∈ R,u, v ∈ V .
(A6) (α+ β)u = αu+ βu,∀α, β ∈ R,u ∈ V .
(A7) α(βu) = (αβ)u,∀α, β ∈ R,u ∈ V .
(A8) 1u = u



Review
Subspace

Proposition Suppose V is a linear space. W is a subspace of V if:

W is a subset of V .
0 ∈ W .
∀u, v ∈ W : u + w ∈ W .
∀u ∈ W , α ∈ R : αu ∈ W .



Exercise 3

The trace tr : Rn×n → R of an n × n matrix is defined by summing the
main diagonal:

trA =
n∑

i=1

aii = a11 + a22 + · · ·+ ann

The subset of trace-free matrices is denoted

sln(R) =
{
A ∈ Rn×n : trA = 0

}
Show that sln(R) is a subspace of Rn×n



Review
Span and Spanning Set

Definition - span Suppose is V a linear space, U = {u1, u2, . . . , uk} is a
subset of V . Then
span(U) = {α1u1 + α2u2 + . . .+ αkuk | α1, α2, . . . , αk ∈ R}

Definition - spanning set Suppose is V a linear space,
U = {u1, u2, . . . , uk} is a subset of V . If span(U) = V , then U is a
spanning set of V , or U spans V



Excercise 4

Recall that we have shown in our lectures that P2, the set of polynomials
with degrees ≤ 2, is a linear space.
Show that S =

{
1 + x2, 2− x2, x , 1 + 4x

}
spans the linear space P2(R).



Review
Null Space and Column Space

Null Space The solution set of a homogeneous linear system Ax = 0 is a
linear space, denoted as N(A); i.e. N(A) = {x | Ax = 0}

Column Space Suppose A = {a1, . . . , an} ∈ Rm×n is a matrix.
Then span({a1, . . . , an}) is called the column space of A, denoted as
C (A).



Exercise 5

Show that
N(ATA) = N(A)
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