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Vector |IlI: Norm and Inner Product

Instructor: Ruoyu Sun @ T L EEEICE ) HBAHEER
Cosme LLouart H;r;‘uigﬁ The Chinese University of Hong Kong, Shenzhen | School of Data Science



I Recall

In the last lecture ...

e Definition of (column) vectors

e Basic vector operations (addition, multiplication, linear combination)



I Linear Algebra Terminology and Conventions

« Avectorisan ordered list of numbers (often a column) written as

- —1.1 ]
0.0
3.6

| 7.2 |

or (-1.1,0,3.6,-7.2)

« Numbers in the list/array are the elements (entries, coefficients, components)

« Number of elements is the size (dimension, length) of the vector (1 -length)
(n-dimensional)
[Warning]: In some textbooks, like Gilbert Strang, length refers to something else

« The vector above has dimension 4; its third entry is 3.6
« A vector of size nis also called an R-vector

« Numbers are called scalars (compared to vectors)



Linear Algebra Terminology and Conventions

« Vectors are often represented by mathematical symbols, e.g.,

Xy, U,V

It could be either in boldface or not, depending on contexts

Other conventions for beginners and engineers: w,vor w, v

The i-th element of an n-vector U is denoted as U

In U;, 1 istheindex

For an m-vector, indexesrunfromi=1to i =n

[Warning]: sometime U; may be used to denote the g -th vector in a list of vectors

Two vectors W, Vv are equal iff u — v =0, writtenas u =V



I Linear Algebra Terminology and Conventions

. Zero vector: All elements are zeros, e.g., (0,0,0,0) denotedby 0, 0, or 0,

. One vector: All elements are ones, e.g., (1,1,1,1) denotedby 1,1, or1,

e Non-zero vector: Not a zero vector

« Non-one vector? Rarely seen!



I Learning Goals Today

Today: More vector operations (1) Vector Norm; (2) Inner Product.

After this lecture, you should be able to:

o calculate the norm & inner product
o tell a few major properties of norm & inner product
o utilize the Cauchy Schwarz inequality and triangular inequality

« provide real-world applications of "inner product”



Part | Vector Norm



I Vector Norm (“Geometric Length”)

Consider a 2-dimensional vector ...

V=)

(0,0) Vl



I Vector Norm

A generalized notion of “absolute value” ...
Definition & -norm)

Llet V= (v;,...,V,) be a n-length vector. The £>-norm

of V, denoted by IV]l2 is defined as

HVHZ — (V12 + - + V&)%

The ¢5-norm is also called an Euclidean norm or geometric length

We often abbreviate H y Hg as H . H



I Properties of Vector Norms

Properties of Vector Norms

P1  ||v|| =0 Iv]| =0 iff v=20

P2  |lev|| =7

P3  [lu+v|] 2 Ju| + vl



I Unit Vector

Definition (Unit Vector)

A vector V is called a unit vector if ||V|| = 1

v

IN4|

For any non-zero vector V, IS a unit vector



Unit Vector: Examples

Examples (Unit Vector)

-
0
L 0

Standard Unit Vectors in a Cartesian coordinate system

[Warning]: In some textbooks, like Stephen Boyd, only above vectors

are called unit vectors




Part Il Inner Product



I Vector Operations

Questionl: Can you think about any other vector operations?
Vi Wy Vi + W
Vs W, Vs + W»
Vector Addition N B P

vn wn Vn + ’Wjpl



I Vector Operations

Questionl: Can you think about any other vector operations?

Vi Wi Vi + Wi
V) Wy Vs + W,
Vector Addition : + —
V w VoW
How about _2 X 2 _ [2"2 )
v” WH vnwn

This is a “point-wise product”.



I Dot Product or inner product

Definition (Dot Product)

A dot product between two vectors (of the same size)
v=V,. V)
W = (Wl, ...,WH)

n

is defined as (V, W) = Z ViWi

i=1

Example: Calculate the dot product of (-1,2,2) and (1,0,-3)



I Dot Product or Inner Product

Sometime we also write a dot product asv - w or v'

W

Recommend writing as (V, W) to avoid confusion.

A dot product is called an inner product in more general settings



I Properties of Inner Products

Properties of Inner Products

P1  Linearity (av+bu,w)=a(v,w)+b(u,w) foralluvw




I Properties of Inner Products

Properties of Inner Products

P1  Linearity (av+bu,w)=a(v,w)+b(u,w) foralluvw

P2  Symmetry (V,w)=(w,v) forall vw




I Properties of Inner Products

Properties of Inner Products

P1  Linearity (av+bu,w)=a(v,w)+b(u,w) foralluvw

P2 Symmetry (V,W)=(w,v) forall vw

P3  Positivity  (v,v) >0 forall Vv

(v,v) =0 iff v=20



I Properties of Inner Products

Properties of Inner Products

P1  Linearity (av+bu,w)=a(v,w)+ b(u,w) foralluvw

P2  Symmetry (V,w)=(w,v) forall vw

P3  Positivity  (V,v) >0 forall V

(v,v) =0 iff v=0

verify (V,V) = V||

Inner product naturally Induces a norm and every: “Inner
Preduct Space” IS a nermed VECIor Space”




I Application 1: Weight, Feature and Score

Example 1.1: My MAT2041 final score

Assignment
&Quiz & Midterm Final Total
Attendence
“weight vector” Weight 0.35 0.3 0.35

Cost 31.5 25.5 33.25 90.25

W =(0.35, 0.3, 0.35): weight vector
VvV =(90, 85, 95): feature vector

(V,W) =90.25 =: score




Application 1: Weight, Feature and Score

Example 1.2: Movie preference

“weight”

“Feature”

Preference of Adam

Movie 1: Moon Man

Action Film| Hollywood | Comedy Total
Weight 10% 10% 80%
Value 0.5 0.5 10
Score 0.05 0.05 38 8.1




Application 1: Weight, Feature and Score

Example 1.2: Movie preference

“Feature”

Movie 2: The Matrix

Preference of Adam

Action Film| Hollywood | Comedy Total
Weight 10% 10% 80%
Value 10 38 2
Score I 1.6 0.2 8.8

Movie 2: Matrix

“Score”



Application 1: Weight, Feature and Score

Application 1: (general)
W s a vector of the same size (often called a weight vector),
vV represents a set of “features” of an object,

Score: inner product (v, w) is a weighted sum of the feature values.

Examples:
i ] Your
Grading Movie ou
example?
. Personal
13 . ) ’)
Weight Grading Scheme Preference .
“Feature” Scores Movie Features "

“Score” Total Score Score ?




I Application 1: Weight, Feature and Score

Vieta-application:

Goal: To evaluate a city, a university, an employee, a basketball player, etc.
Step 1: Set up “rule”; specific to the evaluator
Step 1.1 Set up “features” (indicators)

Step 1.2 Provide weights for different features.

Step 2: Scoring each feature, for each object.

Provide a “rating” for each feature, obtaining a feature vector

Step 3: Compute “evaluation score”

by computing the inner product of weight vector and feature vector

Remark: “Score™ can be used in other areas, e.g. machine learning




Part Il Inner Product
and Norm



Cosine Similarity

Euclidean dot product formula
IEAA

Cosine Similarity —cos &

vl wll

(¥ “ﬂ‘)
QDSQ = \\"3\(\\“\\

Range: [-1,1].  The higher, the more similar.



Application: Searching

Searching: Given a query, find the most 10
relevant entities, e.g. sentences; websites

ldea: Vectorize + compute cosine similarity



Application: Searching

Searching: Given a query, find the most 10 relevant
entities, e.g. sentences; websites

ldea: Vectorize + compute cosine similarity

Query Sentence: "How to make coffee?" — (0.8,1.1,0.5) =q

Candidate 1: "Procedure for preparing Latte”— (2.5,4.3,3.7) = u
Candidate 2: “Story of Car Maker” — - (-15,25,-03)=v



I Application: Searching

Searching: Given a query, find the most 10 relevant
entities, e.g. sentences; websites

ldea: Vectorize + compute cosine similarity

Query Sentence: "How to make coffee?" — (0.8,1.1,0.5) =q

Candidate 1: "Procedure for preparing Latte”— (2.5,4.3,3.7) = u
Candidate 2: “Story of Car Maker” — - (-15,25,-03)=v

Cosine similarity of g and u is ~ 0.95;
Cosine similarity of g and vis ~ 0.33.
Compare cosine similarity: 0.95 > 0.33.

so candidate 1 is more similar to the query.



Calculation of Cosine Similarity

Just list the procedure for the first pair here

First Pair: (0.8,1.1,0.5) and (2.5,4.3, 3.7)

1. Dot Product:

A-B=08x25+11%x43+05x3.7=2+4+4.73+1.85 = 8.58

1. Euclidean Norms:

|A| = 1/0.82 +1.12 + 0.52 = v/0.64 + 1.21 + 0.25 = v/2.1 ~ 1.4491

IB|| = v/2.52 4+ 4.3% + 3.72 = /6.25 + 18.49 + 13.69 = /38.43 ~ 6.2006

1. Cosine Similarity:

8.58 858
1.4491 x 6.2006  8.9848

Cosine Similarity =



Property 1: Relation of Dot Product and Norm

Cauchy-Schwarz Inequality

[ (v-w)| < ||v]l]|w]]

An “incorrect” explanation:

B (V-w) <1
v [ |[w]

We will formally prove Cauchy—Schwarz inequality in approx. Week 8!



I Property 2: Triangle Inequality

Triangle inequality

v+ w| < |[v]] + [[w]]




I Property 3: Pythagoras Law (BeX S HiETEIE)

Pythagoras Law

WIZ+ Nwll* = llv =wll*>  iff (v, w) =

Proof:



I Summary Today

1
Today, we have learned: [|v]| = ||Vll,:= (vi + - +v;)?

— Norm of vector

Z» norm a.k.a. (also known as) Euclidean norm

— Inner product of two vectors

— Applications of inner product:
“feature” and “score” for evaluation

--Properties:

Cosine similarity and Cauchy-Schwartz inequality
Triangular inequality



I More Examples

Question: What if we have three vectors X,Y, Z

Can we write X as a linear combinationof Y,Z ?

Why do we need to do this in our real-world?

The next lecture!
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