Lecture 03

Systems of Linear Equations I: Forms and Elimination

Instructor: Rouyu Sun

In the last lectures ...

- Definition of norm and dot (inner product)
- Calculation of vector norms and inner products
- Real-world examples

Today ... System of Linear Equations!

After this lecture, you should be able to

- 1. Write the 4 forms of **systems of linear equations**
- 2. Write various forms of **matrix-vector product**
- 3. Understand the idea of **elimination for solving systems**

Reading Material: Logic and Proof

Difficulties in Linear Algebra, partially due to:

- lack of training of proving
- lack of LOGIC.

Material to check:

https://www.math.toronto.edu/preparing-for-calculus/ 3_logic/we_2_if_then.html

Part I System of Linear Equations

Linear System of Equations: Preliminary School Example

Problem (Chicken-Rabbit Problem 鸡兔同笼) There are 16 heads and 36 feet in a cage.

How many chickens and how many rabbits are there?

Assumption: Each chicken has 1 head and 2 feet, and each rabbit has 1 head and 4 feet.

```
Definition (Linear Equations)
```

A linear equation is the equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

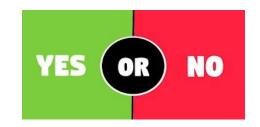
where a_1, a_2, \ldots, a_n, b are real numbers and x_1, x_2, \ldots, x_n are variables

Write it in the vector form:

Exercise (Linear Equations)

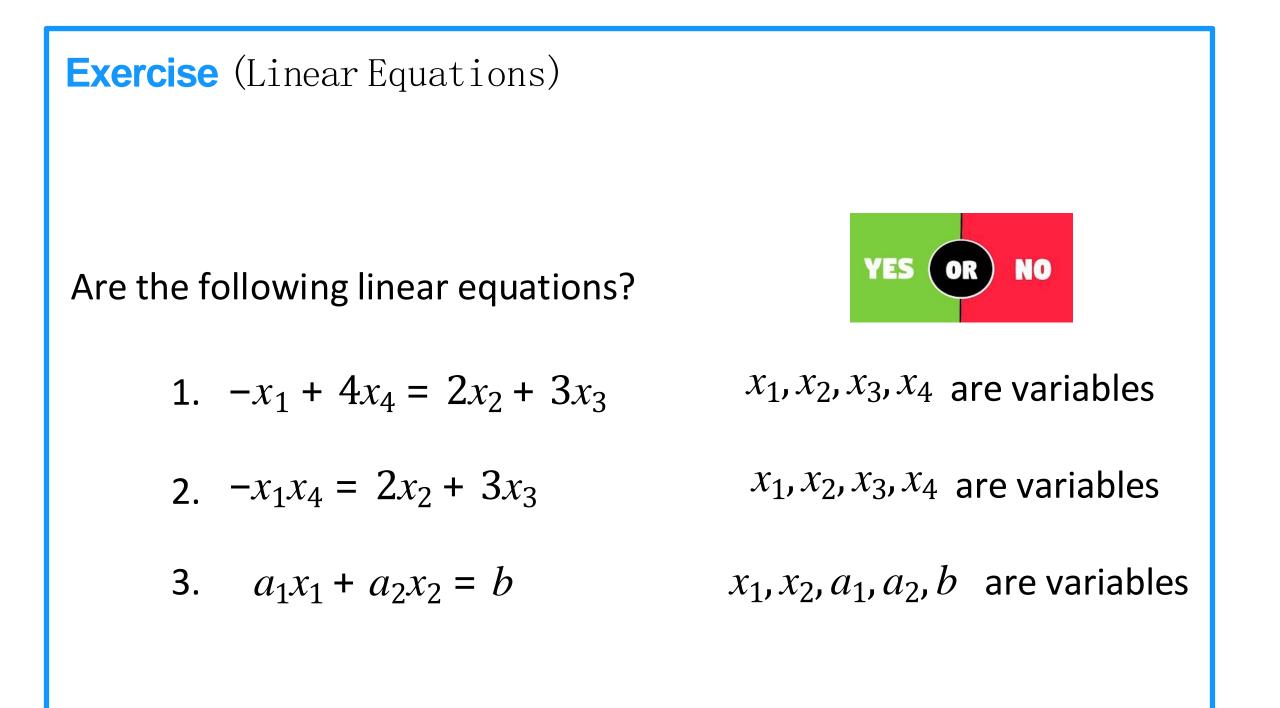
Are the following linear equations?

1.
$$-x_1 + 4x_4 = 2x_2 + 3x_3$$



 x_1, x_2, x_3, x_4 are variables

Exercise (Linear Equations) YES OR NO Are the following linear equations? x_1, x_2, x_3, x_4 are variables 1. $-x_1 + 4x_4 = 2x_2 + 3x_3$ 2. $-x_1x_4 = 2x_2 + 3x_3$ x_1, x_2, x_3, x_4 are variables



Definition (System of Linear Equations)

An *m*×*n* system of linear equations is a *collection* of *m* linear equations with *n* variables

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where all a_{ij} and b_i are real numbers and x_1, x_2, \dots, x_n are variables

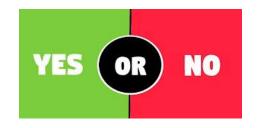
(A system of linear equations can be called a linear system for short)

Exercise (Linear Equations)

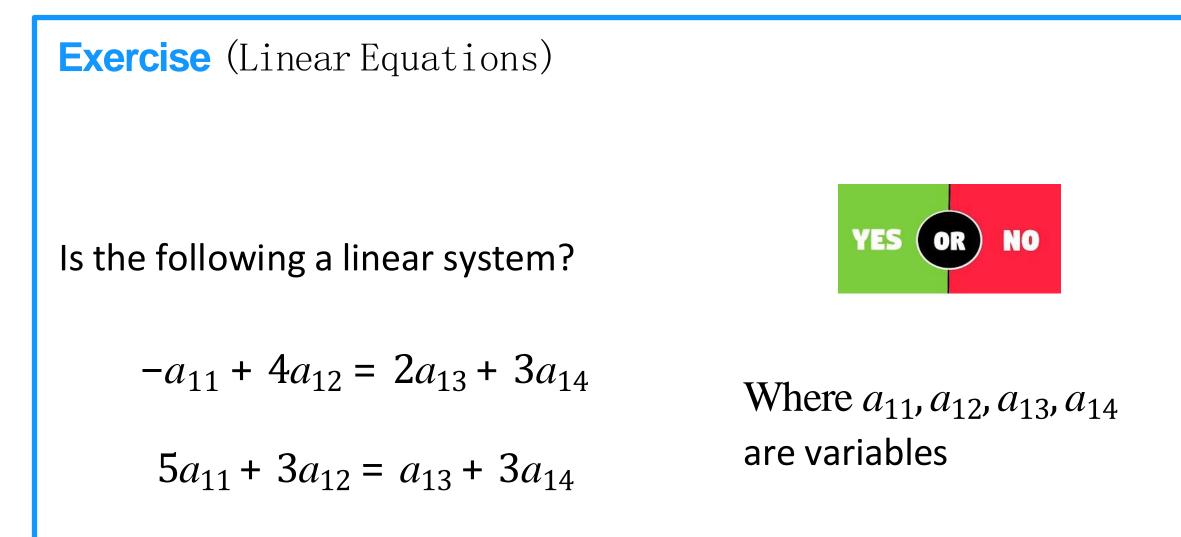
Is the following a linear system?

$$-a_{11} + 4a_{12} = 2a_{13} + 3a_{14}$$

$$5a_{11} + 3a_{12} = a_{13} + 3a_{14}$$



Where a_{11} , a_{12} , a_{13} , a_{14} are variables



It is critical to know what are the **variables (unknowns)**!

(such as the weight vectors in our movie preference example)

What is New in this Course?

You learned these in middle school (or even primary school).

What more can we study? What will be new?

1. Practice.

You can solve system of equations in 2 variables. What about 5 variables? What about 100 variables? What is a general method to solve an any-variable system? (For computers)

What is New in this Course?

You learned these in middle school (or even primary school).

What more can we study? What will be new?

1. Practice.

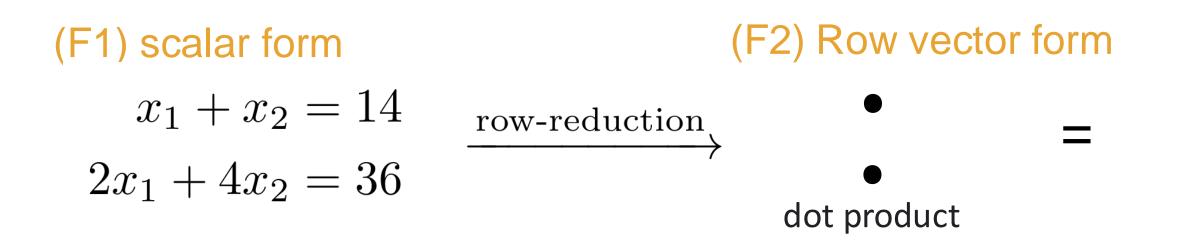
You can solve system of equations in 2 variables. What about 5 variables? What about 100 variables? What is a general method to solve an any-variable system? (For computers)

2. Theory.

Does your general method always work? Can you prove it?

First step: To answer these questions, we will rewrite system of equations with vectors and matrices.

Row-Vector Form of System



Row-Vector Form of System

Can we make the form even simpler?

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} 14 \\ 36 \end{bmatrix}$$

Define \triangleq , then the system becomes

(F0) matrix form:

$$x_1 + x_2 = 14$$
$$2x_1 + 4x_2 = 36$$

Another way of writing the equations: Column-vector form

Four Forms of Linear Systems

Scalar form

$$egin{cases} x_1+x_2 = 16, \ 2x_1+4x_2 = 36. \end{cases}$$

Row-vector form

(Unknown vector satisfies n linear equations simultaneously)

Column-vector form

(Unknown combination of columns produces vector b)

Matrix form

(Given matrix times unknown vector produces b)

Four Forms and Matrix-Vector Product

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} 14 \\ 36 \end{bmatrix}$$
$$\begin{cases} x_1 + x_2 = 16, \\ 2x_1 + 4x_2 = 36. \end{cases} \qquad Ax = b$$
Define Ax =
$$\begin{cases} [1, 1] \cdot [x_1, x_2] = 16, \\ [2, 4] \cdot [x_1, x_2] = 36. \end{cases} \qquad Ax = b$$
Define Ax =
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 4 \end{bmatrix} x_2 = \begin{bmatrix} 16 \\ 36 \end{bmatrix}. \qquad Ax = b$$
Define Ax =

Ignore equations for a while. Summarize the last page.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Definition 1: $A\mathbf{x} =$

Definition 2: $A\mathbf{x} =$

Definition 3: $A\mathbf{x} =$

Claim: Three definitions are equivalent.

Next, we extend these definitions to general matrix and vectors..

Part II Matrix-Vector Product & Four Forms of Linear Systems

Textbook v5: Sec. 1.3 (only first half) and Sec. 2.1

Definition 4.1 (Matrix)

An $m \times n$ matrix A is a rectangular array of numbers with m rows

and *n* columns in the following form:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times n} \in \mathbb{R}^{m \times n}.$$

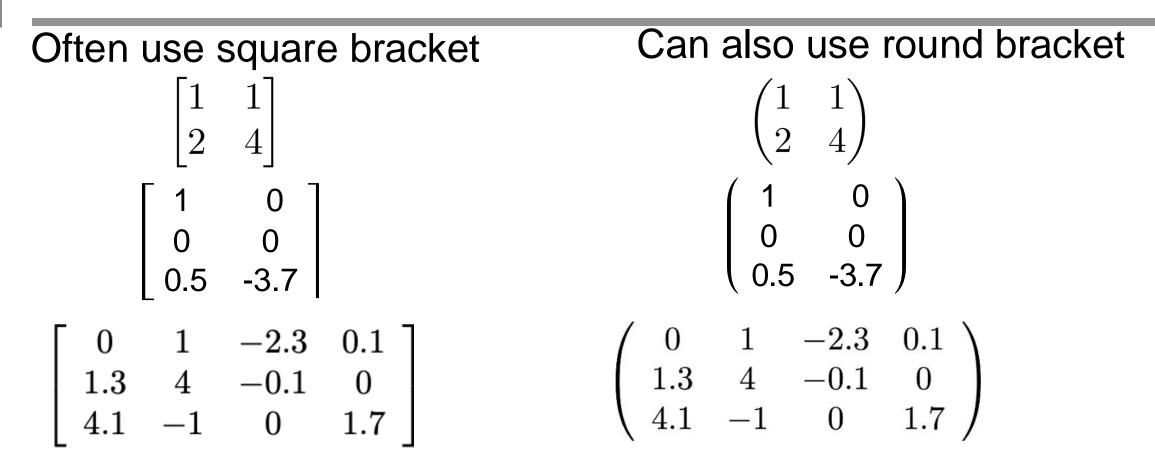
where all a_{ij} are scalars.

Def 4.2 (Dimension):

For an \times matrix, the dimension of A is \times (reads "m by n"). For an $m \times 1$ vector, the dimension of the vector is m, or $m \times 1$.

The dimension of $A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$ is

Matrix: Example and non-example



Non-examples:

Matrices are often denoted by A, B, C, ...

For the matrix $A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$, a_{ij} is called the (i, j)-th entry (element) of A.

When m = n, A is called a *square matrix*; a *rectangular matrix o.w.*

When all entries are zeros, A is called a zero matrix.

Matrix v.s. Vector v.s. Scalar

- When m = 1, A is a row vector
- When n = 1, A is a column vector

Matrix: general ×

- Vector: $m \times 1$ or $1 \times n$ matrix
- Scalar: 1×1 matrix

Remark: In python, scalar and 1 × 1 matrix are different! e.g. scalar 3.5 v.s. 1 × 1 matrix [[3.5]] (Easily cause bug if you don't know this!)

• Column of a matrix
$$a_j = \begin{bmatrix} A_{1j} \\ \vdots \\ A_{mj} \end{bmatrix}$$

• Row of a matrix
$$a^{(i)} = \begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

The skill to identify matrices' columns and matrices' rows is important for the future, but often ignored!

Matrix v.s. Column Vectors: Example of 2 by 3 Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$a_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Express A with its columns

Incorrect answer:

OK but imperfect answer:

Correct answer:

Matrix v.s. Column Vectors: General

Write matrix in terms of column vectors.

Suppose the columns of A are:

Then A=

Observation:

Matrix can be written as a

with each

being a column vector.

i.e., Matrix = _____ of _____

(This understanding will be formalized when talking about block matrix)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$a^{(1)} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \quad a^{(2)} = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$$
Then A=
i.e., Matrix = ______ of _____

Definition of Matrix-Vector Product

Definition 3.1 (Matrix-vector product definition)

Let
$$u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and A be an $m \times n$ matrix $A = (a_{ij})$,
where $i = 1, \dots, m; j = 1, \dots, n$,

The matrix-vector product Au is an $m \times 1$ column vector:

$$Au = \begin{bmatrix} \sum_{j=1}^{n} a_{1j}u_j \\ \sum_{j=1}^{n} a_{2j}u_j \\ \vdots \\ \sum_{j=1}^{n} a_{mj}u_j \end{bmatrix}$$

Remark: Dimension checking **Example:**

$$A u = v$$

$$? n \times 1 m \times 1$$

Special Case: Row * Column Vectors

$$a = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Can we multiply them?

Tentative answer 1: Yes, by Definition of inner product:

PB: inner product of row and column vectors are not well defined.

Tentative answer 2: *a* is a vector, but also a 1x2 matrix.

view it as matrix-vector product.

Reading: GPT may mislead you if you are not expert

GPT's definition:

Definition 6.1 (Matrix-vector product Def-1) $A \circ m \times n$ metric, $\vec{b} \rightarrow n \times 1$ vector, Suppose $A = \begin{bmatrix} \vec{a}^{(v)} \\ \vec{a}^{(m)} \end{bmatrix}$, $A \cdot \vec{b} \triangleq \begin{bmatrix} \vec{a}^{(v)} \vec{b} \\ \vdots \\ \vec{a}^{(m)} \vec{b} \end{bmatrix} \in \mathbb{R}^{m \times 1}$

transform to formal writing

$$A\mathbf{b} = egin{bmatrix} \mathbf{a}^{(1)}\mathbf{b} \ \mathbf{a}^{(2)}\mathbf{b} \ dots \ \mathbf{a}^{(m)}\mathbf{b} \end{bmatrix} \in \mathbb{R}^{m imes 1},$$

where each element of the resulting vector $A\mathbf{b}$ is obtained by taking the dot product of the corresponding row vector $\mathbf{a}^{(i)}$ of A with the vector \mathbf{b}

GPT4 adds "dot product" in definition though I did not ask it to do so.

Reading: GPT may mislead you if you are not expert

GPT's definition:

Definition 6.1 (Matrix-vector product Def-1)

A is mxn metric, b is
$$\Lambda \times 1$$
 vector,
Suppose $A = \begin{bmatrix} \vec{a}^{(i)} \\ \vec{a}^{(m)} \end{bmatrix}$, $A \cdot b \stackrel{a}{=} \begin{bmatrix} \vec{a}^{(i)} \vec{b} \\ \vdots \\ \vec{a}^{(m)} \vec{b} \end{bmatrix} \in \mathbb{R}^{m\times 1}$

transform to formal writing

$$A\mathbf{b} = egin{bmatrix} \mathbf{a}^{(1)}\mathbf{b} \ \mathbf{a}^{(2)}\mathbf{b} \ dots \ \mathbf{a}^{(m)}\mathbf{b} \end{bmatrix} \in \mathbb{R}^{m imes 1},$$

where each element of the resulting vector $A\mathbf{b}$ is obtained by taking the dot product of the corresponding row vector $\mathbf{a}^{(i)}$ of A with the vector \mathbf{b}

GPT4 adds "dot product" in definition though I did not ask it to do so.

After an expert points out the issue:

is this really a dot product? Here a^{(i)} is a row vector!

Solutely correct to point out the discrepancy: $\mathbf{a}^{(i)}$ is indeed a **row vector**, and the operation between $\mathbf{a}^{(i)}$ (a row vector) and \mathbf{b} (a column vector) is **matrix-vector multiplication**, not the traditional dot product of two vectors in \mathbb{R}^{n} .

The correct description of the operation is that the product $\mathbf{a}^{(i)}\mathbf{b}$ involves a matrix multiplication between a $1 \times n$ row vector $\mathbf{a}^{(i)}$ and an $n \times 1$ column vector \mathbf{b} , yielding a scalar. This operation is sometimes loosely referred to as a dot product, but it's more accurately a matrix-vector multiplication.

Here is a revised and more accurate version of the definition:

This operation is sometimes loosely referred to as a dot product, but it's more accurately a matrix-vector multiplication.

Relation of Inner Product and Matrix-Vector Product

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Inner product: $\langle x, y \rangle =$ Matrix-vector product of y and x: Invalid.

Relation of Inner Product and Matrix-Vector Product

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Inner product: $\langle x, y \rangle =$ Matrix-vector product of y and x: Invalid.

Matrix-vector product of x^{\top} and y: $x^{\top}y =$

Two definitions match: $\langle x, y \rangle = x^T y$

This is why we can denote the inner product as $x^{T}y$

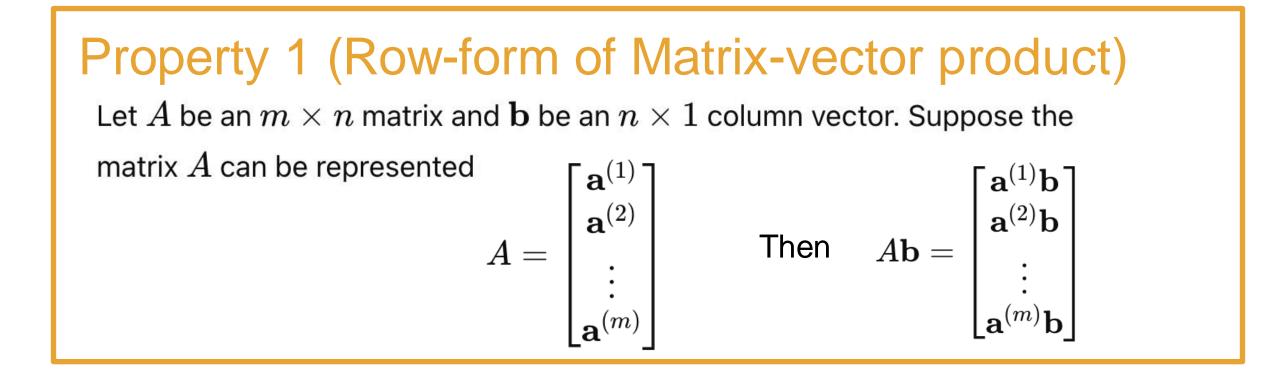
Other Forms of Matrix-Vector Product: Example

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Form 1: $Ax = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + 4x_2 \end{bmatrix}$
Form 2: $Ax = \begin{bmatrix} (1,1) \cdot (x_1, x_2) \\ (2,4) \cdot (x_1, x_2) \end{bmatrix}$
Row-form of A is so $Ax =$
Form 3: $Ax = \begin{bmatrix} 1 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 4 \end{bmatrix} x_2$

Column-form of A is so Ax =

Row-form of Matrix-Vector Product



Column-form of Matrix-Vector Product

Property 2 (Column-form of Matrix-vector product)

Let A be an $m \times n$ matrix and \mathbf{w} be an $n \times 1$ column vector. Suppose A is represented as:

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n],$$

Then
$$A\mathbf{w} = w_1\mathbf{a}_1 + w_2\mathbf{a}_2 + \dots + w_n\mathbf{a}_n$$

Aw is a

of columns.

Very important observation!

More important than the row-form, in the future parts of the course!

More Examples

$$A = \begin{bmatrix} 1 & 4 & 2 & 3 & 5 \\ -2 & 1 & 3 & 0 & -1 \\ 0 & 7 & -1 & -2 & 4 \end{bmatrix}, \ \mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 5 \\ -1 \end{bmatrix},$$

$$A \mathbf{u} = \begin{bmatrix} 1*1+4*(-2)+2*0+3*5+5*(-1)\\ (-2)*1+1*(-2)+3*0+0*5+(-1)*(-1)\\ 0*1+7*(-2)+(-1)*0+(-2)*5+4*(-1) \end{bmatrix}$$
$$A \mathbf{u} = \begin{bmatrix} 3\\ -3\\ -28 \end{bmatrix}$$

Or:
$$A \mathbf{u} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} + (-2) \cdot \begin{bmatrix} 4 \\ 1 \\ 7 \end{bmatrix} + 0 \cdot \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} + 5 \cdot \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 5 \\ -1 \\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} 3 \\ -3 \\ -28 \end{bmatrix}$$

Part III Idea of Elimination

Partly from Sec. 2.2

Solve System of Linear Equations

$$\begin{aligned} x - 2y &= 1\\ 3x + 2y &= 11 \end{aligned}$$

Definition (informal) (Pivot)

First non-zero in the row that does the elimination

More General ...

Example (Solving a 3 × 3 system

$$2x + 4y - 2z = 2$$

 $4x + 9y - 3z = 8$
 $-2x - 3y + 7z = 10$

Key Idea: Elimination.

How to solve n by n system?

First, eliminate one variable by subtracting one equation from others.

Second, solve the remaining (n-1) by (n-1) system.

Continue the process until getting _____ variable and _____ equation.

Similar to "prove by induction" (归纳法证明).

Definition (Coefficient Matrix)

```
Given a linear system,
```

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

The **coefficient matrix** of the system is an $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times n}$$

Definition (Coefficient Matrix) Given a linear system, $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$ $a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$ \dots $a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$ The **coefficient matrix** of the system is an $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =: (a_{ij})_{m \times m}$$

Definition (Augmented matrix)

Given a linear system, $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$...

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

the corresponding augmented matrix is

$$[A \mid \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & b_2 \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Exercise

Consider
$$2x_1 + 3x_2 = 3$$

 $x_1 - x_2 = 4.$

What is the coefficient matrix?

What is the augmented matrix?

Today, we have learned:

- Formulation of systems of linear equations
- Matrix-vector product and four forms of linear system
- Idea of elimination