Lecture 04

Solving Linear System I: "Good Case" of Square System

Ruoyu Sun Instructors: **Cosme Louart**

In the last lecture ...

- Definitions of linear equations and systems of linear equations
- Examples of solving 2×2 system of linear equations
- Definition of Matrix-vector product
- Definition of an augmented matrix representation

Today ... More on System of Linear Equations!

After this lecture, you should be able to

- Tell the definition of lower and upper triangular matrices
- Tell what are elementary row operations, and why they are allowable
- Solve a linear system (square system) using Gaussian Elimination

Part I Gauss-Jordan Elimination: 2 By 2 Example

Length: 20-25 mins.

Definition (Augmented Matrix)

Given a linear system, $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$... $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

the corresponding augmented matrix is:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Overdetermined, Underdetermined and Square

Definition (System of Linear Equations)

An $m \times n$ system of linear equations is

(1) overdetermined system if m > n

(2) **underdetermined** system if m < n

(3) square system if m = n

Today we solve an $n \times n$ System (square)

An $m \times n$ matrix is

(1) tall, if

(2) wide, if

(3) square, if

Definition (Lower Triangular Matrix)

A square matrix of the form

$$L = egin{bmatrix} \ell_{1,1} & & 0 \ \ell_{2,1} & \ell_{2,2} & & \ \ell_{3,1} & \ell_{3,2} & \ddots & \ dots & dots & \ddots & \ddots & \ dots & dots & \ddots & \ddots & \ dots & dots & \ddots & \ddots & \ \ell_{n,1} & \ell_{n,2} & \dots & \ell_{n,n-1} & \ell_{n,n} \end{bmatrix}$$

is called a lower triangular matrix.

Mathematical definition: $L_{ij} = 0$, for any $1 \le i < j \le n$.

is called an upper triangular matrix

Mathematical definition: $U_{ij} = 0$, for any $1 \le j < i \le n$.

```
Definition (Diagonal Entry)
```

```
For a square matrix A each entry A_{i,i}s called a diagonal entry of
```

Definition (Diagonal Matrix)

A square matrix D satisfying $D_{ij} = 0$, $\forall i \neq j$ is called a diagonal **matrix**.

Examples

Are these matrices: upper triangular matrices, lower triangular matrices, diagonal matrices?

Gaussian Elimination for 2*2 System: Matrix View

Equation view

$$\begin{cases} x_1 + x_2 = 12\\ 2x_1 + 4x_2 = 38. \end{cases}$$

Augmented Matrix view

Part II Elementary Row Operations

Length: 15-20 mins.

Operation on Rows?

Last page: Operation on equations; translate equations to matrices.

Can we translate operations (from equation-operations to matrix-operations)?

Another Row Operation

Review

Solving a 2×2 system:

What are the key steps?

(1) Multiply a row by a non-zero scalar

(2) Add to one row a scalar multiple of another

(3) Swap the positions of two rows

Third Row Operation

Equation view Augmented Matrix view $\begin{vmatrix} 2 & 4 & | & 38 \\ 1 & 1 & | & 12 \end{vmatrix}$ $2x_1 + 4x_2 = 38$ (1) $x_1 + x_2 = 12$ (2) Swap the two equations first. $\begin{bmatrix} 1 & 1 & | & 12 \\ 2 & 4 & | & 38 \end{bmatrix}$ $x_1 + x_2 = 12$ (2) $2x_1 + 4x_2 = 38$ (1)

Remark:

You could eliminate _____ from Eq. 2, without swapping. In this example:

You can swap them, but not absolute necessary.

(1) [**Multiplication**] Multiply an equation by a **non-zero** scalar $2x_1 + 4x_2 = 38 \rightarrow$

(2) [Addition] Add to one equation a scalar multiple of another

$$\begin{cases} x_1 + x_2 = 12, \\ 2x_1 + 4x_2 = 38 \end{cases} \rightarrow$$

(3) [Interchange] Swap two equations

$$\begin{cases} x_1 + x_2 = 12, \\ 2x_1 + 4x_2 = 38 \end{cases} \rightarrow$$

Operations on linear equations!

Allowable Operations on Rows

(1) [Multiplication] Multiply a row by a non-zero scalar

$$R_i
ightarrow$$

(2) [Addition] Add to one row a scalar multiple of another

$$R_i
ightarrow$$

(3) [Interchange] Swap the positions of two rows

$$egin{pmatrix} R_i \ R_j \end{pmatrix}
ightarrow$$

Elementary Row Operations Preserves Solution

Exercise (The operations preserve solutions)

Performing elementary operations will create a new system.

Prove: The new system and the original system has the same solution(s).

Claim: (S1) and (S2) have the same solutions.

2nd Elementary Row Operations Preserves Solution

Claim (2nd row operation preserve solutions) System (S1):

$$egin{array}{cc} \mathrm{S1}) & egin{cases} A_1x=b_1 & ext{(1)}\ A_2x=b_2 & ext{(2)} \end{cases} \end{array}$$

where
$$A_1, A_2 \in \mathbb{R}^{1 imes 2}$$
, $x \in \mathbb{R}^2$, and $b_1, b_2 \in \mathbb{R}.$

System (S2):

After performing a row operation, the system transforms into:

$$(\mathrm{S2}) \quad egin{cases} A_1x = b_1 & ext{(I)} \ (lpha A_1 + A_2)x = lpha b_1 + b_2 & ext{(3)} \end{cases}$$

 $\left(S1
ight)$ and $\left(S2
ight)$ have the same solutions.

What Operation Does Not Work?

Judgement:

True or False:

Suppose the system of equations is given by:

 $egin{array}{ccc} {
m (P1)} & lpha_1 x_1 + lpha_2 x_2 = b_1, \ {
m (P2)} & eta_1 x_1 + eta_2 x_2 = b_2. \end{array}$

After performing the row operation:

we claim that (P1) and (P2) have the same solutions as (P1') and (P2').

Exercise (Other Operations)

Can the following operations be performed?

(4) Multiply a row by zero

(5) Multiply the coefficients of two equations

Part III G-J Elimination Using Row Operations

Length: 15-20 mins.

Gaussian Elimination: 3 by 3 System

Step 1: Forward Elimination (Equation)

$$x + y + z = 6$$
$$x + 2y + 2z = 9$$
$$x + 2y + 3z = 10$$

$$x + y + z = 6$$
$$y + z = 3$$
$$z = 1$$

Step 1: Forward Elimination (Matrix)

Gaussian Elimination

Step 2: Backward Substitution (Scalar)

$$x + y + z = 6$$
$$y + z = 3$$
$$z = 1$$

Step 2: Backward Substitution (Matrix)

Identify the leading entry in the first row, a_{11}

Use a_{11} as the pivot to eliminate all entries below it in the first column. Perform row operations:

$$R_i
ightarrow R_i - rac{a_{i1}}{a_{11}}R_1 \quad ext{for } i=2,3,\ldots,m.$$

Use a_{11} as the pivot to eliminate all entries below it in the first column. Perform row operations:

$$R_i
ightarrow R_i - rac{a_{i1}}{a_{11}}R_1 \quad ext{for } i=2,3,\ldots,m.$$

Assumption for now (good case): a_{11} is nonzero.

Second Step

 $egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \mid & b_1 \ 0 & \hat{a}_{22} & \cdots & \hat{a}_{2n} & \mid & \hat{b}_2 \ 0 & \hat{a}_{32} & \cdots & \hat{a}_{3n} & \mid & \hat{b}_3 \ dots & dots & \ddots & dots & \mid & dots \ 0 & 0 & \cdots & \hat{a}_{nn} & \mid & \hat{b}_n \end{bmatrix}$

- 1. **Identify the pivot**: The pivot for this step is \hat{a}_{22} , the updated entry in the second row and second column.
- 2. Eliminate entries below the pivot: Use \hat{a}_{22} to eliminate all entries below it in the second column:

$$R_i o R_i - rac{\hat{a}_{i2}}{\hat{a}_{22}}R_2 \quad ext{for} \ i=3,4,\ldots,m$$

3. **Update the matrix**: The rows below the second row are updated accordingly, resulting in a modified matrix.

Assumption for now (good case): \hat{a}_{22} is nonzero.

Gaussian-Jordan Elimination for "Good" Systems

Pipeline

(Think: does it always work?)

Phase 1: Forward Elimination.

Perform elementary row operations and try to get an upper triangular matrix.

Phase 2: Backward substitution

Perform elementary row operations and try to get a diagonal matrix.

Assumption 1 At each iteration of the forward elimination, the next diagonal entry is nonzero.

Claim 1 Under Assumption 1, we can get a diagonal matrix at the end of Step 2.Corollary 1 Under Assumption 1, the system has a unique solution.

This assumption may not hold for some problems; will discuss later.

Concluding Section

Summary Today

One sentence summary:

Detailed summary:

Questions:

Can we use matrix operations to represent GE?